亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved U-net-based leukocyte segmentation method

分割 计算机科学 过度拟合 人工智能 卷积神经网络 模式识别(心理学) 人工神经网络
作者
Mengjing Zhu,Wei Chen,Yi Sun,Zhaohui Li
出处
期刊:Journal of Biomedical Optics [SPIE]
卷期号:28 (04) 被引量:3
标识
DOI:10.1117/1.jbo.28.4.045002
摘要

SignificanceLeukocytes are mainly composed of neutrophils, basophils, eosinophils, monocytes, and lymphocytes. The number and proportion of different types of leukocytes correspond to different diseases, so an accurate segmentation of each type of leukocyte is important for the diagnosis of disease. However, the acquisition of blood cell images can be affected by external environmental factors, which can lead to variable light and darkness, complex backgrounds, and poorly characterized leukocytes.AimTo address the problem of complex blood cell images collected under different environments and the lack of obvious leukocyte features, a leukocyte segmentation method based on improved U-net is proposed.ApproachFirst, adaptive histogram equalization-retinex correction was introduced for data enhancement to make the leukocyte features in the blood cell images clearer. Then, to address the problem of similarity between different types of leukocytes, convolutional block attention module is added to the four skip connections of U-net to focus the features from spatial and channel aspects, so that the network can quickly locate the high-value information of features in different channels and spaces. It avoids the problem of large amount of repeated computation of low-value information, prevents overfitting, and improves the training efficiency and generalization ability of the network. Finally, to solve the problem of class imbalance in blood cell images and to better segment the cytoplasm of leukocytes, a loss function combining focal loss and Dice loss is proposed.ResultsWe use the BCISC public dataset to verify the effectiveness of the proposed method. The segmentation of multiple leukocytes using the method of this paper can achieve 99.53% accuracy and 91.89% mIoU.ConclusionsThe experimental results show that the method achieves good segmentation results for lymphocytes, basophils, neutrophils, eosinophils, and monocytes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茄子完成签到,获得积分10
5秒前
科研通AI6应助YNHN采纳,获得10
6秒前
科研通AI6应助喷火球采纳,获得10
14秒前
传奇3应助茄子采纳,获得10
18秒前
VDC发布了新的文献求助10
32秒前
田様应助浪里白条采纳,获得10
40秒前
46秒前
49秒前
科研小新发布了新的文献求助10
49秒前
小圆发布了新的文献求助10
54秒前
55秒前
李爱国应助科研小新采纳,获得10
56秒前
Amber发布了新的文献求助10
1分钟前
1分钟前
1分钟前
月月发布了新的文献求助10
1分钟前
Anlocia完成签到 ,获得积分10
1分钟前
XX发布了新的文献求助10
1分钟前
ktw完成签到,获得积分10
1分钟前
Youy完成签到 ,获得积分10
1分钟前
小池完成签到,获得积分10
1分钟前
世良发布了新的文献求助10
1分钟前
月月完成签到,获得积分10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
西吴完成签到 ,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
bkagyin应助chen采纳,获得10
1分钟前
1分钟前
小池发布了新的文献求助10
1分钟前
1分钟前
1分钟前
chen发布了新的文献求助10
1分钟前
lu2025完成签到,获得积分10
1分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650695
求助须知:如何正确求助?哪些是违规求助? 4781473
关于积分的说明 15052510
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572352
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487362