Improved U-net-based leukocyte segmentation method

分割 计算机科学 过度拟合 人工智能 卷积神经网络 模式识别(心理学) 人工神经网络
作者
Mengjing Zhu,Wei Chen,Yi Sun,Zhaohui Li
出处
期刊:Journal of Biomedical Optics 卷期号:28 (04) 被引量:3
标识
DOI:10.1117/1.jbo.28.4.045002
摘要

SignificanceLeukocytes are mainly composed of neutrophils, basophils, eosinophils, monocytes, and lymphocytes. The number and proportion of different types of leukocytes correspond to different diseases, so an accurate segmentation of each type of leukocyte is important for the diagnosis of disease. However, the acquisition of blood cell images can be affected by external environmental factors, which can lead to variable light and darkness, complex backgrounds, and poorly characterized leukocytes.AimTo address the problem of complex blood cell images collected under different environments and the lack of obvious leukocyte features, a leukocyte segmentation method based on improved U-net is proposed.ApproachFirst, adaptive histogram equalization-retinex correction was introduced for data enhancement to make the leukocyte features in the blood cell images clearer. Then, to address the problem of similarity between different types of leukocytes, convolutional block attention module is added to the four skip connections of U-net to focus the features from spatial and channel aspects, so that the network can quickly locate the high-value information of features in different channels and spaces. It avoids the problem of large amount of repeated computation of low-value information, prevents overfitting, and improves the training efficiency and generalization ability of the network. Finally, to solve the problem of class imbalance in blood cell images and to better segment the cytoplasm of leukocytes, a loss function combining focal loss and Dice loss is proposed.ResultsWe use the BCISC public dataset to verify the effectiveness of the proposed method. The segmentation of multiple leukocytes using the method of this paper can achieve 99.53% accuracy and 91.89% mIoU.ConclusionsThe experimental results show that the method achieves good segmentation results for lymphocytes, basophils, neutrophils, eosinophils, and monocytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fg发布了新的文献求助10
2秒前
赘婿应助ksr8888采纳,获得10
4秒前
4秒前
刘同学发布了新的文献求助10
4秒前
6秒前
且悲且歌完成签到,获得积分10
7秒前
田様应助supersky采纳,获得10
7秒前
佛四魁儿应助Daheitao采纳,获得10
8秒前
事事顺利完成签到,获得积分10
8秒前
8秒前
8秒前
昵称完成签到,获得积分10
9秒前
十一发布了新的文献求助10
11秒前
十二完成签到,获得积分10
11秒前
mozhi完成签到,获得积分20
12秒前
Singularity举报湖月照我影求助涉嫌违规
12秒前
净禅发布了新的文献求助10
13秒前
15秒前
mozhi发布了新的文献求助20
15秒前
17秒前
17秒前
17秒前
19秒前
良辰应助LLL采纳,获得10
19秒前
kikiaini完成签到,获得积分0
20秒前
20秒前
20秒前
qifei完成签到,获得积分10
21秒前
华仔应助BJ_whc采纳,获得10
22秒前
CRT发布了新的文献求助10
23秒前
排列组合式文章完成签到,获得积分10
24秒前
Ruijun发布了新的文献求助10
24秒前
乐安发布了新的文献求助10
24秒前
庞博发布了新的文献求助30
24秒前
26秒前
栀子完成签到,获得积分10
27秒前
29秒前
29秒前
kk完成签到,获得积分10
29秒前
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161774
求助须知:如何正确求助?哪些是违规求助? 2813049
关于积分的说明 7898270
捐赠科研通 2472043
什么是DOI,文献DOI怎么找? 1316316
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129