Improved U-net-based leukocyte segmentation method

分割 计算机科学 过度拟合 人工智能 卷积神经网络 模式识别(心理学) 人工神经网络
作者
Mengjing Zhu,Wei Chen,Yi Sun,Zhaohui Li
出处
期刊:Journal of Biomedical Optics [SPIE]
卷期号:28 (04) 被引量:3
标识
DOI:10.1117/1.jbo.28.4.045002
摘要

SignificanceLeukocytes are mainly composed of neutrophils, basophils, eosinophils, monocytes, and lymphocytes. The number and proportion of different types of leukocytes correspond to different diseases, so an accurate segmentation of each type of leukocyte is important for the diagnosis of disease. However, the acquisition of blood cell images can be affected by external environmental factors, which can lead to variable light and darkness, complex backgrounds, and poorly characterized leukocytes.AimTo address the problem of complex blood cell images collected under different environments and the lack of obvious leukocyte features, a leukocyte segmentation method based on improved U-net is proposed.ApproachFirst, adaptive histogram equalization-retinex correction was introduced for data enhancement to make the leukocyte features in the blood cell images clearer. Then, to address the problem of similarity between different types of leukocytes, convolutional block attention module is added to the four skip connections of U-net to focus the features from spatial and channel aspects, so that the network can quickly locate the high-value information of features in different channels and spaces. It avoids the problem of large amount of repeated computation of low-value information, prevents overfitting, and improves the training efficiency and generalization ability of the network. Finally, to solve the problem of class imbalance in blood cell images and to better segment the cytoplasm of leukocytes, a loss function combining focal loss and Dice loss is proposed.ResultsWe use the BCISC public dataset to verify the effectiveness of the proposed method. The segmentation of multiple leukocytes using the method of this paper can achieve 99.53% accuracy and 91.89% mIoU.ConclusionsThe experimental results show that the method achieves good segmentation results for lymphocytes, basophils, neutrophils, eosinophils, and monocytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fanfan完成签到 ,获得积分10
刚刚
cc发布了新的文献求助10
刚刚
宓天问发布了新的文献求助10
刚刚
蔷薇之花发布了新的文献求助10
刚刚
Bizibili完成签到,获得积分10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得30
1秒前
领导范儿应助啊啊啊啊采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得30
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得20
2秒前
无花果应助科研通管家采纳,获得10
2秒前
TiO2完成签到 ,获得积分10
2秒前
所所应助科研通管家采纳,获得10
2秒前
CyrusSo524应助科研通管家采纳,获得10
2秒前
young应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得30
2秒前
2秒前
研友_Y59785应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
开放凡桃发布了新的文献求助10
3秒前
旺大财发布了新的文献求助10
4秒前
cc发布了新的文献求助10
4秒前
4秒前
bkagyin应助OKOK采纳,获得10
4秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016278
求助须知:如何正确求助?哪些是违规求助? 3556388
关于积分的说明 11320934
捐赠科研通 3289218
什么是DOI,文献DOI怎么找? 1812421
邀请新用户注册赠送积分活动 887940
科研通“疑难数据库(出版商)”最低求助积分说明 812060