General multi-agent reinforcement learning integrating adaptive manoeuvre strategy for real-time multi-aircraft conflict resolution

强化学习 计算机科学 冲突解决 人工智能 冲突解决策略 机器学习 实时计算 政治学 法学
作者
Yutong Chen,Minghua Hu,Lei Yang,Yan Xu,Hua Xie
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:151: 104125-104125 被引量:9
标识
DOI:10.1016/j.trc.2023.104125
摘要

Reinforcement learning (RL) techniques are under investigation for resolving conflict in air traffic management (ATM), exploiting their computational capabilities and ability to cope with flight uncertainty. However, the limitations of generalisation make it difficult for existing RL-based conflict resolution (CR) methods to be effective in practice. This paper proposes a general multi-agent reinforcement learning (MARL) method that integrates an adaptive manoeuvre strategy to enhance both the solution’s efficiency and the model’s generalisation in multi-aircraft conflict resolution (MACR). A partial observation approach based on the imminent threat detection sectors is used to gather critical environmental information, enabling the model to be applied in arbitrary scenarios. Agents are trained to provide the correct flight intention (such as increasing speed and yawing to the left), while an adaptive manoeuvre strategy generates the specific manoeuvre (speed and heading parameters) based on the flight intention. To address flight uncertainty and performance challenges caused by the intrinsic non-stationarity in MARL, a warning area for each aircraft is introduced. We employ a state-of-the-art Deep Q-learning Network (DQN) method, Rainbow DQN, to improve the efficiency of the RL algorithm. The multi-agent system is trained and deployed in a distributed manner to adapt to real-world scenarios. A sensitivity analysis of uncertainty levels and warning area sizes is conducted to explore their impact on the proposed method. Simulation experiments confirm the effectiveness of the training and generalisation of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Noyo采纳,获得10
1秒前
李健应助二胡采纳,获得10
1秒前
1秒前
科研通AI2S应助Phee采纳,获得10
2秒前
vvv完成签到 ,获得积分10
2秒前
皛鱼发布了新的文献求助10
2秒前
SHAO应助大海采纳,获得10
2秒前
3秒前
orixero应助maiyatang采纳,获得10
3秒前
3秒前
3秒前
lasu发布了新的文献求助10
3秒前
4秒前
4秒前
榴莲完成签到,获得积分10
4秒前
yeah关注了科研通微信公众号
4秒前
海盐芝士发布了新的文献求助10
4秒前
SHAO应助风清扬采纳,获得50
5秒前
Ava应助淡定的定帮采纳,获得10
5秒前
5秒前
芒果味猕猴桃完成签到,获得积分10
5秒前
IVENG发布了新的文献求助10
5秒前
7秒前
MM发布了新的文献求助10
8秒前
墨墨完成签到,获得积分10
8秒前
温柔以冬发布了新的文献求助10
8秒前
吃饱饱完成签到,获得积分10
8秒前
甜美板栗完成签到,获得积分10
8秒前
9秒前
kyt发布了新的文献求助10
9秒前
善学以致用应助马不停蹄采纳,获得10
9秒前
Lucas应助wzll采纳,获得10
10秒前
美丽越彬发布了新的文献求助10
10秒前
10秒前
orixero应助hanabi采纳,获得10
10秒前
10秒前
10秒前
10秒前
keshi发布了新的文献求助30
11秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978978
求助须知:如何正确求助?哪些是违规求助? 3522830
关于积分的说明 11215177
捐赠科研通 3260355
什么是DOI,文献DOI怎么找? 1799883
邀请新用户注册赠送积分活动 878713
科研通“疑难数据库(出版商)”最低求助积分说明 807060