General multi-agent reinforcement learning integrating adaptive manoeuvre strategy for real-time multi-aircraft conflict resolution

强化学习 计算机科学 冲突解决 人工智能 冲突解决策略 机器学习 实时计算 政治学 法学
作者
Yutong Chen,Minghua Hu,Lei Yang,Yan Xu,Hua Xie
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:151: 104125-104125 被引量:9
标识
DOI:10.1016/j.trc.2023.104125
摘要

Reinforcement learning (RL) techniques are under investigation for resolving conflict in air traffic management (ATM), exploiting their computational capabilities and ability to cope with flight uncertainty. However, the limitations of generalisation make it difficult for existing RL-based conflict resolution (CR) methods to be effective in practice. This paper proposes a general multi-agent reinforcement learning (MARL) method that integrates an adaptive manoeuvre strategy to enhance both the solution’s efficiency and the model’s generalisation in multi-aircraft conflict resolution (MACR). A partial observation approach based on the imminent threat detection sectors is used to gather critical environmental information, enabling the model to be applied in arbitrary scenarios. Agents are trained to provide the correct flight intention (such as increasing speed and yawing to the left), while an adaptive manoeuvre strategy generates the specific manoeuvre (speed and heading parameters) based on the flight intention. To address flight uncertainty and performance challenges caused by the intrinsic non-stationarity in MARL, a warning area for each aircraft is introduced. We employ a state-of-the-art Deep Q-learning Network (DQN) method, Rainbow DQN, to improve the efficiency of the RL algorithm. The multi-agent system is trained and deployed in a distributed manner to adapt to real-world scenarios. A sensitivity analysis of uncertainty levels and warning area sizes is conducted to explore their impact on the proposed method. Simulation experiments confirm the effectiveness of the training and generalisation of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
欣慰的盼芙完成签到,获得积分10
2秒前
3秒前
3秒前
隐形曼青应助耍酷的千愁采纳,获得10
3秒前
ang发布了新的文献求助10
4秒前
cc发布了新的文献求助10
4秒前
多情怜蕾发布了新的文献求助10
4秒前
4秒前
5秒前
kchrisuzad完成签到,获得积分10
5秒前
gtgyh完成签到 ,获得积分10
5秒前
17完成签到 ,获得积分10
6秒前
6秒前
RMgX发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
xiaoluo发布了新的文献求助10
8秒前
漂亮画板发布了新的文献求助10
10秒前
hfhkjh完成签到,获得积分10
11秒前
rest发布了新的文献求助10
11秒前
秋祭应助gaterina采纳,获得10
12秒前
谷晋羽完成签到,获得积分10
13秒前
自行车完成签到,获得积分10
14秒前
14秒前
15秒前
PengqianGuo完成签到,获得积分10
16秒前
多情怜蕾完成签到,获得积分10
16秒前
17秒前
17秒前
共享精神应助jovrtic采纳,获得10
17秒前
wgky发布了新的文献求助10
18秒前
18秒前
机灵的中蓝完成签到 ,获得积分10
18秒前
水蜜桃完成签到 ,获得积分10
20秒前
22秒前
wsx发布了新的文献求助10
22秒前
半生瓜完成签到,获得积分10
22秒前
外向的涛发布了新的文献求助30
22秒前
王珊发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649603
求助须知:如何正确求助?哪些是违规求助? 4778715
关于积分的说明 15049374
捐赠科研通 4808630
什么是DOI,文献DOI怎么找? 2571661
邀请新用户注册赠送积分活动 1528083
关于科研通互助平台的介绍 1486851