General multi-agent reinforcement learning integrating adaptive manoeuvre strategy for real-time multi-aircraft conflict resolution

强化学习 计算机科学 冲突解决 人工智能 冲突解决策略 机器学习 实时计算 政治学 法学
作者
Yutong Chen,Minghua Hu,Lei Yang,Yan Xu,Hua Xie
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:151: 104125-104125 被引量:9
标识
DOI:10.1016/j.trc.2023.104125
摘要

Reinforcement learning (RL) techniques are under investigation for resolving conflict in air traffic management (ATM), exploiting their computational capabilities and ability to cope with flight uncertainty. However, the limitations of generalisation make it difficult for existing RL-based conflict resolution (CR) methods to be effective in practice. This paper proposes a general multi-agent reinforcement learning (MARL) method that integrates an adaptive manoeuvre strategy to enhance both the solution’s efficiency and the model’s generalisation in multi-aircraft conflict resolution (MACR). A partial observation approach based on the imminent threat detection sectors is used to gather critical environmental information, enabling the model to be applied in arbitrary scenarios. Agents are trained to provide the correct flight intention (such as increasing speed and yawing to the left), while an adaptive manoeuvre strategy generates the specific manoeuvre (speed and heading parameters) based on the flight intention. To address flight uncertainty and performance challenges caused by the intrinsic non-stationarity in MARL, a warning area for each aircraft is introduced. We employ a state-of-the-art Deep Q-learning Network (DQN) method, Rainbow DQN, to improve the efficiency of the RL algorithm. The multi-agent system is trained and deployed in a distributed manner to adapt to real-world scenarios. A sensitivity analysis of uncertainty levels and warning area sizes is conducted to explore their impact on the proposed method. Simulation experiments confirm the effectiveness of the training and generalisation of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kiki发布了新的文献求助10
刚刚
going发布了新的文献求助20
刚刚
李健的小迷弟应助小西采纳,获得30
1秒前
1秒前
1秒前
liyiyi发布了新的文献求助10
1秒前
1秒前
xixilulixiu完成签到 ,获得积分10
3秒前
4秒前
啦啦啦啦完成签到,获得积分20
5秒前
5秒前
Ashley完成签到,获得积分10
6秒前
秋中雨发布了新的文献求助10
7秒前
LONG完成签到,获得积分10
7秒前
星陨发布了新的文献求助10
7秒前
高挑的保温杯完成签到,获得积分20
8秒前
Nikki发布了新的文献求助10
8秒前
winfree完成签到 ,获得积分10
9秒前
GGBOND完成签到,获得积分10
10秒前
123木头人关注了科研通微信公众号
10秒前
安渝发布了新的文献求助10
11秒前
研友_VZG7GZ应助ZHAYUE采纳,获得10
11秒前
张牧之完成签到 ,获得积分10
13秒前
啦啦啦啦发布了新的文献求助10
14秒前
14秒前
Ava应助BioRick采纳,获得10
15秒前
木木杨完成签到,获得积分10
15秒前
小小发布了新的文献求助10
16秒前
linger完成签到 ,获得积分10
16秒前
11111111完成签到,获得积分10
17秒前
英姑应助愉快松鼠采纳,获得10
17秒前
英俊的铭应助Rong采纳,获得10
18秒前
18秒前
大模型应助星陨采纳,获得10
18秒前
在水一方应助小刘鸭鸭采纳,获得10
19秒前
purple完成签到 ,获得积分10
20秒前
一念初见发布了新的文献求助10
20秒前
小黑Robot完成签到,获得积分10
21秒前
科研通AI2S应助柚屿采纳,获得10
22秒前
dragonborn完成签到,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120563
求助须知:如何正确求助?哪些是违规求助? 4325901
关于积分的说明 13478119
捐赠科研通 4159552
什么是DOI,文献DOI怎么找? 2279551
邀请新用户注册赠送积分活动 1281381
关于科研通互助平台的介绍 1220210