General multi-agent reinforcement learning integrating adaptive manoeuvre strategy for real-time multi-aircraft conflict resolution

强化学习 计算机科学 冲突解决 人工智能 冲突解决策略 机器学习 实时计算 政治学 法学
作者
Yutong Chen,Minghua Hu,Lei Yang,Yan Xu,Hua Xie
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:151: 104125-104125 被引量:9
标识
DOI:10.1016/j.trc.2023.104125
摘要

Reinforcement learning (RL) techniques are under investigation for resolving conflict in air traffic management (ATM), exploiting their computational capabilities and ability to cope with flight uncertainty. However, the limitations of generalisation make it difficult for existing RL-based conflict resolution (CR) methods to be effective in practice. This paper proposes a general multi-agent reinforcement learning (MARL) method that integrates an adaptive manoeuvre strategy to enhance both the solution’s efficiency and the model’s generalisation in multi-aircraft conflict resolution (MACR). A partial observation approach based on the imminent threat detection sectors is used to gather critical environmental information, enabling the model to be applied in arbitrary scenarios. Agents are trained to provide the correct flight intention (such as increasing speed and yawing to the left), while an adaptive manoeuvre strategy generates the specific manoeuvre (speed and heading parameters) based on the flight intention. To address flight uncertainty and performance challenges caused by the intrinsic non-stationarity in MARL, a warning area for each aircraft is introduced. We employ a state-of-the-art Deep Q-learning Network (DQN) method, Rainbow DQN, to improve the efficiency of the RL algorithm. The multi-agent system is trained and deployed in a distributed manner to adapt to real-world scenarios. A sensitivity analysis of uncertainty levels and warning area sizes is conducted to explore their impact on the proposed method. Simulation experiments confirm the effectiveness of the training and generalisation of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
saveMA发布了新的文献求助10
4秒前
健身boy完成签到,获得积分10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
6秒前
循环bug完成签到,获得积分10
7秒前
8秒前
SonRisa完成签到,获得积分10
9秒前
寒冷海云发布了新的文献求助10
10秒前
Sea完成签到,获得积分10
11秒前
jihaowen完成签到,获得积分20
13秒前
14秒前
木森ab发布了新的文献求助10
15秒前
天天呼的海角完成签到,获得积分10
15秒前
19秒前
P值有星完成签到,获得积分10
19秒前
睡不醒的煜煜完成签到,获得积分10
21秒前
Plucky完成签到,获得积分10
21秒前
杜杨帆完成签到,获得积分10
23秒前
25秒前
草木发布了新的文献求助10
26秒前
杉进完成签到 ,获得积分10
29秒前
33秒前
慕青应助木森ab采纳,获得10
39秒前
申思发布了新的文献求助10
40秒前
42秒前
42秒前
boxi完成签到,获得积分10
43秒前
45秒前
superworm1完成签到,获得积分10
45秒前
cebr发布了新的文献求助10
45秒前
搜集达人应助高高问柳采纳,获得10
45秒前
yyl完成签到 ,获得积分10
48秒前
木森ab完成签到,获得积分10
48秒前
麻薯头头发布了新的文献求助10
52秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043