Inter-patient ECG classification with intra-class coherence based weighted kernel extreme learning machine

心跳 计算机科学 人工智能 判别式 模式识别(心理学) 多类分类 机器学习 支持向量机 分类器(UML) 计算机安全
作者
Yuefan Xu,Sen Zhang,Wendong Xiao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120095-120095 被引量:8
标识
DOI:10.1016/j.eswa.2023.120095
摘要

The variability of the ECG patterns among patients often exists in real-world application of ECG classification and limits the generalization ability of existing ECG recognition approach. Furthermore, the class imbalance problem among ECG classes also poses a massive challenge to ECG recognition task. The skewed data distribution exhibited by class imbalance may produce a learning bias toward the majority class during model training, resulting in the deterioration of the recognition performance for underrepresented classes, thereby incurring the failure of the model. To cope with the above issues, a novel algorithm termed intra-class coherence based weighted kernel extreme learning machine (ICC-WKELM) is proposed for imbalanced heartbeat multiclass classification. A compact and discriminative feature set is constructed beforehand by the combination of multi-perspective features and implementation of mutual-information-based feature selection for characterization of heartbeat general features among individuals. For heartbeat classification, kernel extreme learning machine (KELM), due to its excellent classification ability, is introduced as a heartbeat classifier. In the face of imbalanced phenomenon existing in the arrhythmia classes, differing from the traditional quantity-based imbalance criterion, spatial distribution of arrhythmia samples is taken into account, and the class imbalance for arrhythmias is measured by intra-class coherence (ICC). On this basis, a novel weight assignment strategy for imbalanced arrhythmia classes is designed and ICC-WKELM algorithm for imbalanced arrhythmia multiclass classification is further proposed. The study follows the recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) EC57:1998 standard and adopts the inter-patient evaluation scheme. The proposed approach is verified on the MIT-BIH arrhythmia dataset, the F1 scores for normal beat, supraventricular ectopic beat, and ventricular ectopic beat are 98.05%, 68.80%, and 93.52%, respectively, and the overall accuracy of the proposed approach reaches 96.15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zlx发布了新的文献求助20
刚刚
顽强的小刘应助mmb采纳,获得10
刚刚
科研通AI5应助传统的太清采纳,获得30
刚刚
orixero应助www采纳,获得10
1秒前
1秒前
ESJIAN发布了新的文献求助10
2秒前
111发布了新的文献求助10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
shhoing应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
苏卿应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
4秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
斯文败类应助科研通管家采纳,获得100
5秒前
5秒前
5秒前
李健应助七七采纳,获得30
5秒前
zbh完成签到,获得积分10
5秒前
所所应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
xiaotianli完成签到,获得积分10
6秒前
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670942
求助须知:如何正确求助?哪些是违规求助? 3227849
关于积分的说明 9777334
捐赠科研通 2938001
什么是DOI,文献DOI怎么找? 1609736
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959