已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A physically-based constitutive model for a novel heat resistant martensitic steel under different cyclic loading modes: Microstructural strengthening mechanisms

材料科学 蠕动 马氏体 位错 本构方程 磁滞 应力松弛 相(物质) 冶金 复合材料 结构工程 微观结构 凝聚态物理 物理 化学 有机化学 有限元法 工程类
作者
Kai Song,Kaimeng Wang,Lei Zhao,Lianyong Xu,Ninshu Ma,Yongdian Han,Kangda Hao,Libin Zhang,Yalin Gao
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:165: 103611-103611 被引量:40
标识
DOI:10.1016/j.ijplas.2023.103611
摘要

Cyclic responses of a novel heat resistant martensitic steel, 9Cr3Co3W1CuVNbB steel, under different loading modes were studied to reveal its complex strengthening mechanisms at high temperature. Based on the experimental observations, dislocation strengthening, precipitation strengthening by M23C6 phase, MX phase, and Cu-rich phase, and subgrain boundary strengthening were the main mechanisms for its excellent fatigue and creep-fatigue properties. In particular, the dynamic process of interaction between phase and dislocation were studied with the help of molecular dynamics method, and the different contributions of hard and soft phases in the studied steel were determined in fatigue and creep-fatigue loading. Based on these phenomena, a physically-based constitutive model was proposed for both fatigue and creep-fatigue (dwell fatigue at elevated temperature) tests considering various micromechanical mechanisms. Three ways for dislocation annihilation were proposed to simulate the dislocation evolution under different loadings. In addition, the effect of Cu-rich phase was modeled by critical breaking angle and dislocation line tension. The capability of the proposed model under different loading modes was verified by comparing cyclic responses, hysteresis loops, stress relaxation, and dislocation density evolution. The proposed model provides an alternative perspective on understanding fatigue and creep-fatigue behaviors of heat resistant martensitic steels owning the similar strengthening mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
含着朵白云完成签到 ,获得积分10
4秒前
尘远知山静完成签到 ,获得积分10
4秒前
yeah发布了新的文献求助10
5秒前
yang完成签到 ,获得积分10
6秒前
木林森完成签到,获得积分10
8秒前
木林森发布了新的文献求助10
12秒前
香蕉觅云应助池鱼思故渊采纳,获得10
18秒前
xh完成签到,获得积分10
22秒前
me发布了新的文献求助10
22秒前
111发布了新的文献求助10
24秒前
清风明月完成签到 ,获得积分10
25秒前
bkagyin应助苏沐阳采纳,获得10
26秒前
27秒前
30秒前
在在发布了新的文献求助10
31秒前
阮俏发布了新的文献求助30
35秒前
38秒前
40秒前
Lliu应助透彻含义采纳,获得10
40秒前
wanci应助阮俏采纳,获得30
43秒前
xiuxiu完成签到 ,获得积分0
44秒前
杨同学完成签到,获得积分10
45秒前
chengymao发布了新的文献求助10
45秒前
木子完成签到 ,获得积分10
45秒前
赘婿应助科研通管家采纳,获得30
50秒前
50秒前
50秒前
脑洞疼应助hu采纳,获得10
52秒前
老大黎明完成签到,获得积分20
54秒前
59秒前
222333发布了新的文献求助10
59秒前
天选小牛马完成签到 ,获得积分10
1分钟前
haprier完成签到 ,获得积分10
1分钟前
AM发布了新的文献求助30
1分钟前
打打应助王冰洁采纳,获得100
1分钟前
1分钟前
1分钟前
1分钟前
大宝君发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573236
求助须知:如何正确求助?哪些是违规求助? 4659412
关于积分的说明 14724454
捐赠科研通 4599168
什么是DOI,文献DOI怎么找? 2524154
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704