亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A physically-based constitutive model for a novel heat resistant martensitic steel under different cyclic loading modes: Microstructural strengthening mechanisms

材料科学 蠕动 马氏体 位错 本构方程 磁滞 应力松弛 相(物质) 冶金 复合材料 结构工程 微观结构 凝聚态物理 工程类 有限元法 物理 有机化学 化学
作者
Kai Song,Kaimeng Wang,Lei Zhao,Lianyong Xu,Ninshu Ma,Yongdian Han,Kangda Hao,Libin Zhang,Yalin Gao
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:165: 103611-103611 被引量:40
标识
DOI:10.1016/j.ijplas.2023.103611
摘要

Cyclic responses of a novel heat resistant martensitic steel, 9Cr3Co3W1CuVNbB steel, under different loading modes were studied to reveal its complex strengthening mechanisms at high temperature. Based on the experimental observations, dislocation strengthening, precipitation strengthening by M23C6 phase, MX phase, and Cu-rich phase, and subgrain boundary strengthening were the main mechanisms for its excellent fatigue and creep-fatigue properties. In particular, the dynamic process of interaction between phase and dislocation were studied with the help of molecular dynamics method, and the different contributions of hard and soft phases in the studied steel were determined in fatigue and creep-fatigue loading. Based on these phenomena, a physically-based constitutive model was proposed for both fatigue and creep-fatigue (dwell fatigue at elevated temperature) tests considering various micromechanical mechanisms. Three ways for dislocation annihilation were proposed to simulate the dislocation evolution under different loadings. In addition, the effect of Cu-rich phase was modeled by critical breaking angle and dislocation line tension. The capability of the proposed model under different loading modes was verified by comparing cyclic responses, hysteresis loops, stress relaxation, and dislocation density evolution. The proposed model provides an alternative perspective on understanding fatigue and creep-fatigue behaviors of heat resistant martensitic steels owning the similar strengthening mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
15秒前
橘橘橘子皮完成签到 ,获得积分10
16秒前
CodeCraft应助趁微风不躁采纳,获得10
31秒前
景荆关注了科研通微信公众号
42秒前
852应助科研通管家采纳,获得10
51秒前
orixero应助科研通管家采纳,获得10
51秒前
李健应助科研通管家采纳,获得10
51秒前
所所应助科研通管家采纳,获得10
51秒前
Owen应助科研通管家采纳,获得10
51秒前
悟空爱吃酥橙完成签到,获得积分10
58秒前
阔达白凡完成签到,获得积分10
59秒前
小花小宝和阿飞完成签到 ,获得积分10
1分钟前
美丽的冰枫完成签到,获得积分10
1分钟前
义气的断秋完成签到,获得积分10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
传奇3应助学术悍匪采纳,获得10
1分钟前
Orange应助Carol采纳,获得10
1分钟前
1分钟前
学术悍匪发布了新的文献求助10
1分钟前
乐乐应助冯宇采纳,获得10
1分钟前
1分钟前
冯宇发布了新的文献求助10
1分钟前
FU发布了新的文献求助10
2分钟前
2分钟前
环走鱼尾纹完成签到 ,获得积分10
2分钟前
2分钟前
yang发布了新的文献求助10
2分钟前
ZanE完成签到,获得积分10
2分钟前
NexusExplorer应助学术悍匪采纳,获得10
3分钟前
3分钟前
FU发布了新的文献求助10
3分钟前
3分钟前
学术悍匪发布了新的文献求助10
3分钟前
ning完成签到 ,获得积分10
3分钟前
无花果应助一二采纳,获得10
3分钟前
3分钟前
天天天晴完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4814931
关于积分的说明 15080683
捐赠科研通 4816245
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532236
关于科研通互助平台的介绍 1490814