A physically-based constitutive model for a novel heat resistant martensitic steel under different cyclic loading modes: Microstructural strengthening mechanisms

材料科学 蠕动 马氏体 位错 本构方程 磁滞 应力松弛 相(物质) 冶金 复合材料 结构工程 微观结构 凝聚态物理 物理 化学 有机化学 有限元法 工程类
作者
Kai Song,Kaimeng Wang,Lei Zhao,Lianyong Xu,Ninshu Ma,Yongdian Han,Kangda Hao,Libin Zhang,Yalin Gao
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:165: 103611-103611 被引量:30
标识
DOI:10.1016/j.ijplas.2023.103611
摘要

Cyclic responses of a novel heat resistant martensitic steel, 9Cr3Co3W1CuVNbB steel, under different loading modes were studied to reveal its complex strengthening mechanisms at high temperature. Based on the experimental observations, dislocation strengthening, precipitation strengthening by M23C6 phase, MX phase, and Cu-rich phase, and subgrain boundary strengthening were the main mechanisms for its excellent fatigue and creep-fatigue properties. In particular, the dynamic process of interaction between phase and dislocation were studied with the help of molecular dynamics method, and the different contributions of hard and soft phases in the studied steel were determined in fatigue and creep-fatigue loading. Based on these phenomena, a physically-based constitutive model was proposed for both fatigue and creep-fatigue (dwell fatigue at elevated temperature) tests considering various micromechanical mechanisms. Three ways for dislocation annihilation were proposed to simulate the dislocation evolution under different loadings. In addition, the effect of Cu-rich phase was modeled by critical breaking angle and dislocation line tension. The capability of the proposed model under different loading modes was verified by comparing cyclic responses, hysteresis loops, stress relaxation, and dislocation density evolution. The proposed model provides an alternative perspective on understanding fatigue and creep-fatigue behaviors of heat resistant martensitic steels owning the similar strengthening mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适苗条完成签到,获得积分10
刚刚
Zn应助开水泡饼采纳,获得10
刚刚
科目三应助Liu采纳,获得10
1秒前
1秒前
eating完成签到,获得积分10
1秒前
李双艳完成签到,获得积分10
1秒前
英姑应助科研混子采纳,获得10
1秒前
li完成签到,获得积分10
2秒前
Hungrylunch应助woshiwuziq采纳,获得20
3秒前
合适苗条发布了新的文献求助10
3秒前
安静听白发布了新的文献求助10
3秒前
krystal发布了新的文献求助10
3秒前
4秒前
15122303完成签到,获得积分10
4秒前
lht完成签到 ,获得积分10
5秒前
传奇3应助纯真电源采纳,获得10
5秒前
环走鱼尾纹完成签到 ,获得积分10
5秒前
xiuxiu_27发布了新的文献求助10
6秒前
222完成签到,获得积分10
6秒前
zyz1132完成签到,获得积分10
6秒前
何处芳歇完成签到,获得积分10
7秒前
7秒前
LXYang完成签到,获得积分10
7秒前
7秒前
LL完成签到,获得积分10
7秒前
8秒前
8秒前
十月发布了新的文献求助20
9秒前
9秒前
针地很不戳完成签到,获得积分10
9秒前
10秒前
奋斗金连完成签到,获得积分10
10秒前
科研菜鸟完成签到,获得积分10
10秒前
圈圈发布了新的文献求助10
11秒前
zhanglh完成签到 ,获得积分10
11秒前
11秒前
Liu完成签到,获得积分10
11秒前
啊大大哇完成签到,获得积分10
11秒前
一平驳回了HEIKU应助
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678