A physically-based constitutive model for a novel heat resistant martensitic steel under different cyclic loading modes: Microstructural strengthening mechanisms

材料科学 蠕动 马氏体 位错 本构方程 磁滞 应力松弛 相(物质) 冶金 复合材料 结构工程 微观结构 凝聚态物理 物理 化学 有机化学 有限元法 工程类
作者
Kai Song,Kaimeng Wang,Lei Zhao,Lianyong Xu,Ninshu Ma,Yongdian Han,Kangda Hao,Libin Zhang,Yalin Gao
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:165: 103611-103611 被引量:30
标识
DOI:10.1016/j.ijplas.2023.103611
摘要

Cyclic responses of a novel heat resistant martensitic steel, 9Cr3Co3W1CuVNbB steel, under different loading modes were studied to reveal its complex strengthening mechanisms at high temperature. Based on the experimental observations, dislocation strengthening, precipitation strengthening by M23C6 phase, MX phase, and Cu-rich phase, and subgrain boundary strengthening were the main mechanisms for its excellent fatigue and creep-fatigue properties. In particular, the dynamic process of interaction between phase and dislocation were studied with the help of molecular dynamics method, and the different contributions of hard and soft phases in the studied steel were determined in fatigue and creep-fatigue loading. Based on these phenomena, a physically-based constitutive model was proposed for both fatigue and creep-fatigue (dwell fatigue at elevated temperature) tests considering various micromechanical mechanisms. Three ways for dislocation annihilation were proposed to simulate the dislocation evolution under different loadings. In addition, the effect of Cu-rich phase was modeled by critical breaking angle and dislocation line tension. The capability of the proposed model under different loading modes was verified by comparing cyclic responses, hysteresis loops, stress relaxation, and dislocation density evolution. The proposed model provides an alternative perspective on understanding fatigue and creep-fatigue behaviors of heat resistant martensitic steels owning the similar strengthening mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩彩完成签到,获得积分10
刚刚
阳光香水发布了新的文献求助10
刚刚
1秒前
1秒前
3秒前
4秒前
量子星尘发布了新的文献求助50
5秒前
5秒前
山楂卷关注了科研通微信公众号
5秒前
杨杨杨发布了新的文献求助30
6秒前
烟花应助奖品肉麻膏耶采纳,获得10
7秒前
指数爆炸发布了新的文献求助10
8秒前
mwzeng发布了新的文献求助10
8秒前
赘婿应助ziyiziyi采纳,获得10
8秒前
李慕溪发布了新的文献求助20
8秒前
JACKPAN完成签到,获得积分10
8秒前
西瓜妹发布了新的文献求助10
10秒前
科研通AI5应助身处人海采纳,获得10
11秒前
Hao完成签到,获得积分10
12秒前
酷波er应助陈傲雪采纳,获得10
12秒前
顺利的小懒猪完成签到 ,获得积分10
13秒前
一棵树莓给一棵树莓的求助进行了留言
13秒前
小蘑菇应助JACKPAN采纳,获得10
16秒前
YoroYoshi完成签到,获得积分10
18秒前
18秒前
18秒前
科研通AI5应助mwzeng采纳,获得10
18秒前
19秒前
20秒前
量子星尘发布了新的文献求助50
21秒前
Gzh_NJ完成签到,获得积分10
21秒前
YoroYoshi发布了新的文献求助10
21秒前
生动路人发布了新的文献求助10
22秒前
lucy发布了新的文献求助10
22秒前
22秒前
22秒前
mochi发布了新的文献求助10
23秒前
烤冷面应助Candice采纳,获得10
23秒前
24秒前
ALL发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089378
求助须知:如何正确求助?哪些是违规求助? 4304127
关于积分的说明 13413480
捐赠科研通 4129704
什么是DOI,文献DOI怎么找? 2261721
邀请新用户注册赠送积分活动 1265791
关于科研通互助平台的介绍 1200360