亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic detection of actual water depth of urban floods from social media images

洪水(心理学) 众包 生计 航程(航空) 测距 社会化媒体 最小边界框 计算机科学 计算机视觉 人工智能 地理 图像(数学) 工程类 万维网 心理学 电信 考古 航空航天工程 心理治疗师 农业
作者
Jingru Li,Ruying Cai,Yi Tan,Haijun Zhou,Abdul-Manan Sadick,Wenchi Shou,Xiaoling Wang
出处
期刊:Measurement [Elsevier BV]
卷期号:216: 112891-112891 被引量:10
标识
DOI:10.1016/j.measurement.2023.112891
摘要

Urban flooding disasters are the most frequent natural disasters in cities, which broadly affects people's livelihood. Prompt emergency response is the key to alleviating such impact, however, that would rely on the timely mapping of flooding according to waterlogging severity. Compared with traditional approaches, crowdsourcing images from social media has emerged as a more efficient way to obtain this type of information. Therefore, this paper aims to explore the approach based on computer vision technology to automatically extract water depth from social media images, which can be utilized to construct flooding maps during urban flooding. Firstly, the images related to urban flooding were retrieved from social media and then filtered, leaving only images containing people. Secondly, a specific objective detection model based on YOLO was trained to detect the human body parts which are divided into crus, thigh, shoulder, and head from bottom to top. The experiment shows that the mAP of the trained human body parts detection model in the test dataset is 0.967. Afterward, an algorithm for extracting water depth was proposed based on the ratio of bounding boxes of detected body parts in images to the actual length of human body parts. Next, these models were verified by comparing them with manually estimated depth range and manually measured depth. The experiment shows that the accuracy of water depth range is 0.959 and the mean absolute error of the actual depth detection of water is 10.22 cm in the measurement dataset. Finally, the proposed models were applied to map the 2016 flooding that occurred in Wuhan as an illustrative case. This approach is helpful to broaden the source of flooding severity information and improve the efficiency of flood mapping in urban flood emergency management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
14秒前
小透明应助科研通管家采纳,获得20
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
天天快乐应助hihi采纳,获得10
16秒前
量子星尘发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
41秒前
43秒前
49秒前
量子星尘发布了新的文献求助10
49秒前
hihi发布了新的文献求助10
54秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
牛八先生完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI5应助芝士土豆泥采纳,获得10
2分钟前
2分钟前
nmslwsnd250发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Gavin发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI5应助hihi采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Kevin完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
back you up应助科研通管家采纳,获得10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661009
求助须知:如何正确求助?哪些是违规求助? 3222203
关于积分的说明 9744032
捐赠科研通 2931818
什么是DOI,文献DOI怎么找? 1605232
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503