Evaluation of Naples Score for Long-Term Mortality in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention

医学 心肌梗塞 经皮冠状动脉介入治疗 内科学 心脏病学 比例危险模型 中性粒细胞与淋巴细胞比率 淋巴细胞
作者
Faysal Şaylık,Tufan Çınar,Murat Selçuk,Tayyar Akbulut,Mert İlker Hayıroğlu,İbrahım Halıl Tanboğa
出处
期刊:Angiology [SAGE]
卷期号:: 000331972311709-000331972311709 被引量:19
标识
DOI:10.1177/00033197231170982
摘要

The Naples score (NS), which is a composite of cardiovascular adverse event predictors including neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, albumin, and total cholesterol, has emerged as a prognostic risk score in cancer patients. We aimed to investigate the predictive value of NS for long-term mortality in ST-segment elevation myocardial infarction patients (STEMI). A total of 1889 STEMI patients were enrolled in this study. The median duration of the study was 43 months (IQR: 32–78). Patients were divided into 2 groups according to NS as group 1 and group 2. We created 3 models as a baseline model, model 1 (baseline + NS in continuous), and model 2 (baseline + NS as categorical). Group 2 patients had higher long-term mortality rates than group 1 patients. The NS was independently associated with long-term mortality and adding NS to a baseline model improved the model performance for prediction and discrimination of long-term mortality. Decision curve analysis demonstrated that model 1 had a better net benefit probability for detecting mortality compared with the baseline model. NS had the highest contributive significant effect in the prediction model. An easily accessible and calculable NS might be used for risk stratification of long-term mortality in STEMI patients undergoing primary percutaneous coronary intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研人完成签到,获得积分10
刚刚
FashionBoy应助彭彭采纳,获得10
刚刚
赤邪发布了新的文献求助10
1秒前
Owen应助lwei采纳,获得10
1秒前
shelly0621给shelly0621的求助进行了留言
1秒前
青木蓝完成签到,获得积分10
1秒前
1秒前
迅速泽洋完成签到,获得积分10
2秒前
dan1029完成签到,获得积分10
2秒前
小王完成签到,获得积分10
2秒前
李繁蕊发布了新的文献求助10
2秒前
3秒前
3秒前
隐形曼青应助hjj采纳,获得10
3秒前
susu完成签到,获得积分10
4秒前
5秒前
caicai发布了新的文献求助10
5秒前
无情的菲鹰完成签到,获得积分10
5秒前
兔兔完成签到 ,获得积分10
5秒前
打打应助勤奋的蜗牛采纳,获得10
5秒前
6秒前
jery完成签到,获得积分10
6秒前
乐乐应助润润轩轩采纳,获得10
7秒前
指哪打哪完成签到,获得积分10
7秒前
弄井发布了新的文献求助30
8秒前
8秒前
8秒前
8秒前
8秒前
Wing完成签到 ,获得积分10
9秒前
R先生发布了新的文献求助10
9秒前
科研小白发布了新的文献求助10
9秒前
年三月完成签到 ,获得积分10
10秒前
lb完成签到,获得积分20
10秒前
10秒前
香蕉觅云应助叶飞荷采纳,获得10
11秒前
flow发布了新的文献求助10
12秒前
穆仰应助li采纳,获得10
12秒前
班尼肥鸭完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762