纳米-
材料科学
相变
光伏系统
相变材料
环境科学
工程物理
散热片
相(物质)
大气科学
复合材料
物理
工程类
热力学
电气工程
量子力学
作者
Dommeti Kameswara Rao,K. Sudhakar Reddy,V. V. Subba Rao
标识
DOI:10.1177/09544089241253149
摘要
The inevitable advancement of solar photovoltaic (PV) system performance highly relies on temperature control, which enhances electrical efficiency. The objective of this study is to enhance electrical efficiency by incorporating phase change material of HS36 (PCM) and nano enhanced PCM (NePM). The thermal properties of PCM were improved by adding graphene flakes (GF) into PCM to enhance the thermal transfer rate between the PV panel and PCM. The phase change properties and thermal conductivity of PCM with different concentrations of GF were assessed. The results indicated that the 0.9 wt.% NePCM exhibited the highest thermal conductivity enhancement of 47% in solid states and a significant reduction in latent heat by 9.4% during freezing compared to pure PCM. The effect of cooling on PV performance was studied using a reference panel, integrated with a heat sink containing PCM (PV/PCM) and NePCM (PV/NePCM). Outdoor experiments were conducted using a 10 W panel, and the results for the use of PCM showed a reduction in temperature and an improvement in efficiency. The findings revealed that attaching a heat sink and integrating the PV panel with pure PCM and NePCM reduced the temperature by 8.65°C and 10.04°C, respectively, and improved efficiency by 11.65% and 12.15%, respectively. It can be concluded that the proposed thermal management method for PV systems offers a viable solution for increasing daily average electrical generation with maximum efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI