FTG-Net-E: A hierarchical ensemble graph neural network for DDoS attack detection

计算机科学 服务拒绝攻击 人工智能 人工神经网络 图形 机器学习 理论计算机科学 互联网 万维网
作者
Rana Abu Bakar,Lorenzo De Marinis,Filippo Cugini,Francesco Paolucci
出处
期刊:Computer Networks [Elsevier]
卷期号:250: 110508-110508 被引量:3
标识
DOI:10.1016/j.comnet.2024.110508
摘要

Distributed Denial-of-Service (DDoS) attacks are a major threat to computer networks. These attacks can be carried out by flooding a network with malicious traffic, overwhelming its resources, and/or making it unavailable to legitimate users. Existing machine learning methods for DDoS attack detection typically use statistical features of network traffic, such as packet sizes and inter-arrival times. However, these methods often fail to capture the complex relationships between different traffic flows. This paper proposes a new DDoS attack detection approach that uses Graph Neural Networks (GNN) ensemble learning. GNN ensemble learning is a type of machine learning that combines multiple GNN models to improve the detection accuracy. We evaluated our approach on the Canadian Institute for Cybersecurity Intrusion Detection Evaluation Dataset (CICIDS2018) and CICIDS2017 datasets, a benchmark dataset for DDoS attack detection. Our work provides two main contributions. First, we extend our DDoS attack detection approach using GNN ensemble learning. Second, we explore the evaluation and fine-tuning of hyperparameter metrics through ensemble learning, significantly enhancing accuracy compared to a single GNN model and achieving an average 3.2% higher F1-score. Additionally, our approach effectively reduces overfitting by incorporating regularization techniques, such as dropout and early stopping. Specifically, we use a hierarchical ensemble of GNN, where each GNN learns the relationships between traffic flows at a different granularity level. We then use bagging and boosting to combine the predictions of the individual GNN, further improving detection accuracy. Results show that our system can achieve 99.67% accuracy, with a F1-score of 99.29%, which is better than state-of-the-art methods, even using single traffic architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
脑洞疼应助蒋宁采纳,获得10
刚刚
CipherSage应助俞晓采纳,获得10
1秒前
花阳发布了新的文献求助10
2秒前
牧瞻完成签到,获得积分10
3秒前
Chenxuan完成签到,获得积分10
4秒前
xx发布了新的文献求助10
4秒前
elysims给elysims的求助进行了留言
4秒前
liangsr5完成签到,获得积分10
5秒前
江上清风游完成签到,获得积分0
6秒前
领导范儿应助文艺的代珊采纳,获得10
7秒前
8秒前
9秒前
科研通AI2S应助姚怜南采纳,获得10
9秒前
金先生应助明天会更美好采纳,获得10
9秒前
NexusExplorer应助仇沅采纳,获得10
10秒前
隐形曼青应助花阳采纳,获得20
10秒前
10秒前
大妮妮驳回了Ava应助
11秒前
nczpf2010发布了新的文献求助10
11秒前
蒋宁发布了新的文献求助10
13秒前
无花果应助WYN采纳,获得10
14秒前
麻薯奶茶发布了新的文献求助10
14秒前
16秒前
木南发布了新的文献求助10
17秒前
17秒前
2248388622完成签到,获得积分20
17秒前
NagatoYuki完成签到,获得积分10
17秒前
18秒前
郭娅楠完成签到 ,获得积分10
23秒前
香蕉觅云应助蒋宁采纳,获得10
24秒前
yujiashun完成签到,获得积分10
24秒前
科研通AI2S应助懒羊羊采纳,获得10
24秒前
WD发布了新的文献求助10
24秒前
斯文败类应助nczpf2010采纳,获得10
25秒前
隐形曼青应助AAAAAAAAAAA采纳,获得10
26秒前
YH发布了新的文献求助10
26秒前
Jasper应助明天会更美好采纳,获得10
26秒前
26秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416011
求助须知:如何正确求助?哪些是违规求助? 3017735
关于积分的说明 8882350
捐赠科研通 2705345
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685735
邀请新用户注册赠送积分活动 680742