FTG-Net-E: A hierarchical ensemble graph neural network for DDoS attack detection

计算机科学 服务拒绝攻击 人工智能 人工神经网络 图形 机器学习 理论计算机科学 互联网 万维网
作者
Rana Abu Bakar,Lorenzo De Marinis,Filippo Cugini,Francesco Paolucci
出处
期刊:Computer Networks [Elsevier BV]
卷期号:250: 110508-110508 被引量:3
标识
DOI:10.1016/j.comnet.2024.110508
摘要

Distributed Denial-of-Service (DDoS) attacks are a major threat to computer networks. These attacks can be carried out by flooding a network with malicious traffic, overwhelming its resources, and/or making it unavailable to legitimate users. Existing machine learning methods for DDoS attack detection typically use statistical features of network traffic, such as packet sizes and inter-arrival times. However, these methods often fail to capture the complex relationships between different traffic flows. This paper proposes a new DDoS attack detection approach that uses Graph Neural Networks (GNN) ensemble learning. GNN ensemble learning is a type of machine learning that combines multiple GNN models to improve the detection accuracy. We evaluated our approach on the Canadian Institute for Cybersecurity Intrusion Detection Evaluation Dataset (CICIDS2018) and CICIDS2017 datasets, a benchmark dataset for DDoS attack detection. Our work provides two main contributions. First, we extend our DDoS attack detection approach using GNN ensemble learning. Second, we explore the evaluation and fine-tuning of hyperparameter metrics through ensemble learning, significantly enhancing accuracy compared to a single GNN model and achieving an average 3.2% higher F1-score. Additionally, our approach effectively reduces overfitting by incorporating regularization techniques, such as dropout and early stopping. Specifically, we use a hierarchical ensemble of GNN, where each GNN learns the relationships between traffic flows at a different granularity level. We then use bagging and boosting to combine the predictions of the individual GNN, further improving detection accuracy. Results show that our system can achieve 99.67% accuracy, with a F1-score of 99.29%, which is better than state-of-the-art methods, even using single traffic architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
桃桃甜筒发布了新的文献求助10
3秒前
13关闭了13文献求助
5秒前
顾矜应助缇娜采纳,获得10
6秒前
6秒前
7秒前
粗暴的君浩完成签到,获得积分10
8秒前
斯文败类应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得30
10秒前
所所应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
喵小薇完成签到 ,获得积分10
11秒前
13秒前
故意的曼香完成签到,获得积分10
13秒前
熊猫小肿完成签到,获得积分10
15秒前
传奇3应助easonchen12312采纳,获得10
15秒前
16秒前
ahhah完成签到,获得积分10
16秒前
超级亿先发布了新的文献求助10
17秒前
小云雀缺缺岛完成签到,获得积分10
19秒前
CC发布了新的文献求助10
20秒前
wkjfh应助超级觅风采纳,获得10
21秒前
田様应助mengguzai采纳,获得10
21秒前
dabaigou完成签到,获得积分10
21秒前
23秒前
小巧谷波完成签到 ,获得积分10
26秒前
26秒前
27秒前
theforth发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999530
求助须知:如何正确求助?哪些是违规求助? 3538968
关于积分的说明 11275514
捐赠科研通 3277819
什么是DOI,文献DOI怎么找? 1807686
邀请新用户注册赠送积分活动 884100
科研通“疑难数据库(出版商)”最低求助积分说明 810138