纳米孔
热导率
材料科学
空隙(复合材料)
电导率
格子(音乐)
热的
纳米技术
化学工程
复合材料
化学
物理化学
热力学
物理
声学
工程类
作者
Tanner Q. Kimberly,Evan Y. C. Wang,Gustavo Navarro,Xiao Qi,Kamil Ciesielski,Eric S. Toberer,Susan M. Kauzlarich
标识
DOI:10.1021/acs.chemmater.4c01092
摘要
Bi2Te3 is a well-known thermoelectric material that was first investigated in the 1960s, optimized over decades, and is now one of the highest performing room-temperature thermoelectric materials to-date. Herein, we report on the colloidal synthesis, growth mechanism, and thermoelectric properties of Bi2Te3 nanoplates with a single nanopore in the center. Analysis of the reaction products during the colloidal synthesis reveals that the reaction progresses via a two-step nucleation and epitaxial growth: first of elemental Te nanorods and then the binary Bi2Te3 nanoplate growth. The rates of epitaxial growth can be controlled during the reaction, thus allowing the formation of a single nanopore in the center of the Bi2Te3 nanoplates. The size of the nanopore can be controlled by changing the pH of the reaction solution, where larger pores with diameter of ∼50 nm are formed at higher pH and smaller pores with diameter of ∼16 nm are formed at lower pH. We propose that the formation of the single nanopore is mediated by the Kirkendall effect and thus the reaction conditions allow for the selective control over pore size. Nanoplates have well-defined hexagonal facets as seen in the scanning and transmission electron microscopy images. The single nanopores have a thin amorphous layer at the edge, revealed by transmission electron microscopy. Thermoelectric properties of the pristine and single-nanopore Bi2Te3 nanoplates were measured in the parallel and perpendicular directions. These properties reveal strong anisotropy with a significant reduction to thermal conductivity and increased electrical resistivity in the perpendicular direction due to the higher number of nanoplate and nanopore interfaces. Furthermore, Bi2Te3 nanoplates with a single nanopore exhibit ultralow lattice thermal conductivity values, reaching ∼0.21 Wm–1K–1 in the perpendicular direction. The lattice thermal conductivity was found to be systematically lowered with pore size, allowing for the realization of a thermoelectric figure of merit, zT of 0.75 at 425 K for the largest pore size.
科研通智能强力驱动
Strongly Powered by AbleSci AI