Into the Void: Single Nanopore in Colloidally Synthesized Bi2Te3 Nanoplates with Ultralow Lattice Thermal Conductivity

纳米孔 热导率 材料科学 空隙(复合材料) 电导率 格子(音乐) 热的 纳米技术 化学工程 复合材料 化学 物理化学 热力学 物理 声学 工程类
作者
Tanner Q. Kimberly,Evan Y. C. Wang,Gustavo Navarro,Xiao Qi,Kamil Ciesielski,Eric S. Toberer,Susan M. Kauzlarich
出处
期刊:Chemistry of Materials [American Chemical Society]
标识
DOI:10.1021/acs.chemmater.4c01092
摘要

Bi2Te3 is a well-known thermoelectric material that was first investigated in the 1960s, optimized over decades, and is now one of the highest performing room-temperature thermoelectric materials to-date. Herein, we report on the colloidal synthesis, growth mechanism, and thermoelectric properties of Bi2Te3 nanoplates with a single nanopore in the center. Analysis of the reaction products during the colloidal synthesis reveals that the reaction progresses via a two-step nucleation and epitaxial growth: first of elemental Te nanorods and then the binary Bi2Te3 nanoplate growth. The rates of epitaxial growth can be controlled during the reaction, thus allowing the formation of a single nanopore in the center of the Bi2Te3 nanoplates. The size of the nanopore can be controlled by changing the pH of the reaction solution, where larger pores with diameter of ∼50 nm are formed at higher pH and smaller pores with diameter of ∼16 nm are formed at lower pH. We propose that the formation of the single nanopore is mediated by the Kirkendall effect and thus the reaction conditions allow for the selective control over pore size. Nanoplates have well-defined hexagonal facets as seen in the scanning and transmission electron microscopy images. The single nanopores have a thin amorphous layer at the edge, revealed by transmission electron microscopy. Thermoelectric properties of the pristine and single-nanopore Bi2Te3 nanoplates were measured in the parallel and perpendicular directions. These properties reveal strong anisotropy with a significant reduction to thermal conductivity and increased electrical resistivity in the perpendicular direction due to the higher number of nanoplate and nanopore interfaces. Furthermore, Bi2Te3 nanoplates with a single nanopore exhibit ultralow lattice thermal conductivity values, reaching ∼0.21 Wm–1K–1 in the perpendicular direction. The lattice thermal conductivity was found to be systematically lowered with pore size, allowing for the realization of a thermoelectric figure of merit, zT of 0.75 at 425 K for the largest pore size.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
马康辉完成签到,获得积分10
5秒前
vvvv完成签到,获得积分10
5秒前
bxyyy应助11采纳,获得10
7秒前
wanci应助从别后忆相逢采纳,获得10
7秒前
徐逊发布了新的文献求助10
8秒前
CAOHOU应助精明问筠采纳,获得10
9秒前
wu8577应助精明问筠采纳,获得10
9秒前
Emma应助科研通管家采纳,获得20
10秒前
王酸菜完成签到 ,获得积分10
10秒前
李健应助科研通管家采纳,获得10
10秒前
完美世界应助无限电话采纳,获得30
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
Emma应助科研通管家采纳,获得10
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
yznfly应助科研通管家采纳,获得60
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
ED应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
张张完成签到,获得积分10
11秒前
Eason小川发布了新的文献求助10
11秒前
ff完成签到,获得积分10
12秒前
dingzj0828完成签到,获得积分10
12秒前
Gang完成签到,获得积分10
13秒前
13秒前
nihao完成签到,获得积分10
15秒前
15秒前
澄与瑾完成签到,获得积分10
16秒前
Luo完成签到,获得积分10
16秒前
搜集达人应助May采纳,获得10
16秒前
16秒前
天机鲁比完成签到,获得积分10
16秒前
17秒前
宛海完成签到,获得积分10
17秒前
浅笑安然完成签到,获得积分10
18秒前
Luo发布了新的文献求助30
19秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565