RPI-GGCN: Prediction of RNA–Protein Interaction Based on Interpretability Gated Graph Convolution Neural Network and Co-Regularized Variational Autoencoders

计算机科学 卷积(计算机科学) 可解释性 人工智能 图形 模式识别(心理学) 数学 人工神经网络 理论计算机科学
作者
Yifei Wang,Pengju Ding,Congjing Wang,Shiyue He,Xin Gao,Bin Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2024.3390935
摘要

RNA-protein interactions (RPIs) play an important role in several fundamental cellular physiological processes, including cell motility, chromosome replication, transcription and translation, and signaling. Predicting RPI can guide the exploration of cellular biological functions, intervening in diseases, and designing drugs. Given this, this study proposes the RPI-gated graph convolutional network (RPI-GGCN) method for predicting RPI based on the gated graph convolutional neural network (GGCN) and co-regularized variational autoencoder (Co-VAE). First, different types of feature information were extracted from RNA and protein sequences by nine feature extraction methods. Second, Co-VAEs are used to eliminate the redundancy of fused features and generate optimal features. Finally, this study introduces gated cyclic units into graph convolutional networks (GCNs) to construct a model for RPI prediction, which efficiently extracts topological information and improves the model's interpretable feature learning and expression capabilities. In the fivefold cross-validation test, the RPI-GGCN method achieved prediction accuracies of 97.27%, 97.32%, 96.54%, 95.76%, and 94.98% on the RPI369, RPI488, RPI1446, RPI1807, and RPI2241 datasets. To test the generalization performance of the model, we used the model trained on RPI369 to predict the independent NPInter v3.0 dataset and achieved excellent performance in all six independent validation sets. By visualizing the RPI network graph based on the prediction results, we aim to provide a new perspective and reference for studying RPI mechanisms and exploring new RPIs. Extensive experimental results demonstrate that RPI-GGCN can provide an efficient, accurate, and stable RPI prediction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
陈梦鼠发布了新的文献求助10
3秒前
3秒前
4秒前
大反应釜完成签到,获得积分10
5秒前
5秒前
奋斗蜗牛完成签到,获得积分10
7秒前
和平港湾发布了新的文献求助10
7秒前
8秒前
bingchem发布了新的文献求助30
8秒前
xiong xiong发布了新的文献求助10
8秒前
小盘子发布了新的文献求助10
8秒前
小林完成签到,获得积分10
8秒前
丰富的高山完成签到,获得积分10
8秒前
8秒前
牧紫菱完成签到,获得积分10
10秒前
小王同学完成签到,获得积分10
10秒前
艾瑞克完成签到,获得积分10
10秒前
母广明完成签到,获得积分10
11秒前
12秒前
KeYang完成签到,获得积分10
12秒前
酷波er应助veraonly采纳,获得10
12秒前
研友_LXdbaL发布了新的文献求助30
12秒前
13秒前
hfut_lee发布了新的文献求助10
14秒前
DduYy完成签到,获得积分10
15秒前
15秒前
支初晴完成签到 ,获得积分10
16秒前
Vaying完成签到 ,获得积分10
16秒前
17秒前
观自在发布了新的文献求助10
17秒前
大力犀牛完成签到,获得积分10
17秒前
研友_LXdbaL完成签到,获得积分20
18秒前
wocao完成签到 ,获得积分10
21秒前
LIU完成签到,获得积分10
21秒前
JS完成签到 ,获得积分10
21秒前
吐泡泡的奇异果完成签到,获得积分10
22秒前
She发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736805
求助须知:如何正确求助?哪些是违规求助? 3280699
关于积分的说明 10020699
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644554
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749668