易腐性
数学优化
本德分解
迭代局部搜索
计算机科学
稳健性(进化)
布线(电子设计自动化)
稳健优化
启发式
迭代函数
数学
元启发式
计算机网络
业务
基因
生物化学
化学
数学分析
营销
作者
Zhichao He,Ya Liu,Kun Liu
摘要
In this study, we focused on determining routing, inventory, and delivery quantities in a multi-period inventory routing problem for perishable products with demand uncertainty. Product lifetime and gradual deterioration were considered to handle perishability. A robust optimization model based on a nominal problem was formulated to handle demand uncertainty. We propose exact approaches called Robust Counterpart Reformulation($ RCR $) based on the duality theorem and Benders Decomposition($ BD $) based on the cutting plane. For small-scale instances, computational results demonstrate that $ RCR $ has advantages in terms of cost saving, computational time, and the number of instances solved. For medium- or large-scale instances, we developed a heuristic called Iterated Local search based on Benders Decomposition($ ILS $-$ BD $) to solve problems approximately. Computational results demonstrate that the solutions generated by $ ILS $-$ BD $ have advantages in terms of quality and robustness.
科研通智能强力驱动
Strongly Powered by AbleSci AI