FAGD-Net: Feature-Augmented Grasp Detection Network Based on Efficient Multi-Scale Attention and Fusion Mechanisms

抓住 计算机科学 编码器 特征(语言学) 人工智能 对象(语法) 比例(比率) 机器人 方向(向量空间) 计算机视觉 模式识别(心理学) 数学 程序设计语言 哲学 语言学 物理 几何学 量子力学 操作系统
作者
Xungao Zhong,Xianghui Liu,Tao Gong,Yuan Sun,Huosheng Hu,Qiang Liu
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (12): 5097-5097 被引量:2
标识
DOI:10.3390/app14125097
摘要

Grasping robots always confront challenges such as uncertainties in object size, orientation, and type, necessitating effective feature augmentation to improve grasping detection performance. However, many prior studies inadequately emphasize grasp-related features, resulting in suboptimal grasping performance. To address this limitation, this paper proposes a new grasping approach termed the Feature-Augmented Grasp Detection Network (FAGD-Net). The proposed network incorporates two modules designed to enhance spatial information features and multi-scale features. Firstly, we introduce the Residual Efficient Multi-Scale Attention (Res-EMA) module, which effectively adjusts the importance of feature channels while preserving precise spatial information within those channels. Additionally, we present a Feature Fusion Pyramidal Module (FFPM) that serves as an intermediary between the encoder and decoder, effectively addressing potential oversights or losses of grasp-related features as the encoder network deepens. As a result, FAGD-Net achieved advanced levels of grasping accuracy, with 98.9% and 96.5% on the Cornell and Jacquard datasets, respectively. The grasp detection model was deployed on a physical robot for real-world grasping experiments, where we conducted a series of trials in diverse scenarios. In these experiments, we randomly selected various unknown household items and adversarial objects. Remarkably, we achieved high success rates, with a 95.0% success rate for single-object household items, 93.3% for multi-object scenarios, and 91.0% for cluttered scenes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z在完成签到 ,获得积分10
刚刚
1秒前
科研通AI6应助哈哈哈采纳,获得10
1秒前
顾矜应助oVUVo采纳,获得10
2秒前
3秒前
闪闪草丛发布了新的文献求助20
3秒前
小哈完成签到 ,获得积分10
5秒前
酷酷云朵发布了新的文献求助10
5秒前
比奇堡不想上班派大星完成签到 ,获得积分10
6秒前
背后的雪卉应助冥土采纳,获得10
7秒前
7秒前
zho应助琳666采纳,获得10
8秒前
9秒前
Zr完成签到,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
子车茗应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
维奈克拉应助科研通管家采纳,获得10
9秒前
子车茗应助科研通管家采纳,获得100
9秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
10秒前
子车茗应助科研通管家采纳,获得100
10秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得30
10秒前
维奈克拉应助科研通管家采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343