医学
膀胱切除术
外科肿瘤学
淋巴结转移
泌尿科
尿路上皮癌
淋巴结
转移
癌
肿瘤科
膀胱癌
放射科
内科学
癌症
作者
Junjie Ji,Tianwei Zhang,Ling Zhu,Yu Yao,Jingchang Mei,Lijiang Sun,Gui-Ming Zhang
出处
期刊:BMC Cancer
[Springer Nature]
日期:2024-06-13
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12467-4
摘要
Abstract Background Lymph node metastasis (LNM) is associated with worse prognosis in bladder urothelial carcinoma (BUC) patients. This study aimed to develop and validate machine learning (ML) models to preoperatively predict LNM in BUC patients treated with radical cystectomy (RC). Methods We retrospectively collected demographic, pathological, imaging, and laboratory information of BUC patients who underwent RC and bilateral lymphadenectomy in our institution. Patients were randomly categorized into training set and testing set. Five ML algorithms were utilized to establish prediction models. The performance of each model was assessed by the area under the receiver operating characteristic curve (AUC) and accuracy. Finally, we calculated the corresponding variable coefficients based on the optimal model to reveal the contribution of each variable to LNM. Results A total of 524 and 131 BUC patients were finally enrolled into training set and testing set, respectively. We identified that the support vector machine (SVM) model had the best prediction ability with an AUC of 0.934 (95% confidence interval [CI]: 0.903–0.964) and accuracy of 0.916 in the training set, and an AUC of 0.855 (95%CI: 0.777–0.933) and accuracy of 0.809 in the testing set. The SVM model contained 14 predictors, and positive lymph node in imaging contributed the most to the prediction of LNM in BUC patients. Conclusions We developed and validated the ML models to preoperatively predict LNM in BUC patients treated with RC, and identified that the SVM model with 14 variables had the best performance and high levels of clinical applicability.
科研通智能强力驱动
Strongly Powered by AbleSci AI