已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using machine learning to develop preoperative model for lymph node metastasis in patients with bladder urothelial carcinoma

医学 膀胱切除术 外科肿瘤学 淋巴结转移 泌尿科 尿路上皮癌 淋巴结 转移 肿瘤科 膀胱癌 放射科 内科学 癌症
作者
Junjie Ji,Tianwei Zhang,Ling Zhu,Yu Yao,Jingchang Mei,Lijiang Sun,Gui-Ming Zhang
出处
期刊:BMC Cancer [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12467-4
摘要

Abstract Background Lymph node metastasis (LNM) is associated with worse prognosis in bladder urothelial carcinoma (BUC) patients. This study aimed to develop and validate machine learning (ML) models to preoperatively predict LNM in BUC patients treated with radical cystectomy (RC). Methods We retrospectively collected demographic, pathological, imaging, and laboratory information of BUC patients who underwent RC and bilateral lymphadenectomy in our institution. Patients were randomly categorized into training set and testing set. Five ML algorithms were utilized to establish prediction models. The performance of each model was assessed by the area under the receiver operating characteristic curve (AUC) and accuracy. Finally, we calculated the corresponding variable coefficients based on the optimal model to reveal the contribution of each variable to LNM. Results A total of 524 and 131 BUC patients were finally enrolled into training set and testing set, respectively. We identified that the support vector machine (SVM) model had the best prediction ability with an AUC of 0.934 (95% confidence interval [CI]: 0.903–0.964) and accuracy of 0.916 in the training set, and an AUC of 0.855 (95%CI: 0.777–0.933) and accuracy of 0.809 in the testing set. The SVM model contained 14 predictors, and positive lymph node in imaging contributed the most to the prediction of LNM in BUC patients. Conclusions We developed and validated the ML models to preoperatively predict LNM in BUC patients treated with RC, and identified that the SVM model with 14 variables had the best performance and high levels of clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到 ,获得积分10
刚刚
Christina完成签到,获得积分10
1秒前
Haki完成签到,获得积分10
1秒前
2秒前
小贾爱喝冰美式完成签到 ,获得积分10
2秒前
Julie完成签到 ,获得积分10
3秒前
zyb完成签到 ,获得积分10
3秒前
Quin完成签到 ,获得积分10
4秒前
dingbeicn完成签到,获得积分10
5秒前
橘子海完成签到 ,获得积分10
6秒前
ZB完成签到,获得积分10
7秒前
小纯完成签到 ,获得积分10
8秒前
虚幻的道天完成签到 ,获得积分10
8秒前
Lucky.完成签到 ,获得积分0
8秒前
Birdy Young发布了新的文献求助10
10秒前
10秒前
姚小楠完成签到 ,获得积分10
11秒前
积极一德完成签到 ,获得积分10
11秒前
cc0514gr完成签到,获得积分10
11秒前
乐乐应助想不到哇采纳,获得10
11秒前
瘦瘦的百褶裙完成签到 ,获得积分10
12秒前
博学多才的小牛完成签到 ,获得积分10
12秒前
14秒前
kalcspin完成签到 ,获得积分10
14秒前
14秒前
荔枝完成签到,获得积分10
15秒前
anyig完成签到,获得积分10
15秒前
whisper发布了新的文献求助10
16秒前
lily完成签到,获得积分10
17秒前
17秒前
pathway完成签到 ,获得积分10
18秒前
FODCOC完成签到,获得积分10
19秒前
19秒前
阿拉哈哈笑完成签到,获得积分10
19秒前
张大帅发布了新的文献求助10
21秒前
21秒前
SciGPT应助whisper采纳,获得10
21秒前
禾木发布了新的文献求助10
21秒前
0514gr完成签到,获得积分10
22秒前
和谐蛋蛋完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493

今日热心研友

沉心静气搞学习
70
差不多先生
2 20
豆子
20
ZJX
1 10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10