Using machine learning to develop preoperative model for lymph node metastasis in patients with bladder urothelial carcinoma

医学 膀胱切除术 外科肿瘤学 淋巴结转移 泌尿科 尿路上皮癌 淋巴结 转移 肿瘤科 膀胱癌 放射科 内科学 癌症
作者
Junjie Ji,Tianwei Zhang,Ling Zhu,Yu Yao,Jingchang Mei,Lijiang Sun,Gui-Ming Zhang
出处
期刊:BMC Cancer [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12467-4
摘要

Abstract Background Lymph node metastasis (LNM) is associated with worse prognosis in bladder urothelial carcinoma (BUC) patients. This study aimed to develop and validate machine learning (ML) models to preoperatively predict LNM in BUC patients treated with radical cystectomy (RC). Methods We retrospectively collected demographic, pathological, imaging, and laboratory information of BUC patients who underwent RC and bilateral lymphadenectomy in our institution. Patients were randomly categorized into training set and testing set. Five ML algorithms were utilized to establish prediction models. The performance of each model was assessed by the area under the receiver operating characteristic curve (AUC) and accuracy. Finally, we calculated the corresponding variable coefficients based on the optimal model to reveal the contribution of each variable to LNM. Results A total of 524 and 131 BUC patients were finally enrolled into training set and testing set, respectively. We identified that the support vector machine (SVM) model had the best prediction ability with an AUC of 0.934 (95% confidence interval [CI]: 0.903–0.964) and accuracy of 0.916 in the training set, and an AUC of 0.855 (95%CI: 0.777–0.933) and accuracy of 0.809 in the testing set. The SVM model contained 14 predictors, and positive lymph node in imaging contributed the most to the prediction of LNM in BUC patients. Conclusions We developed and validated the ML models to preoperatively predict LNM in BUC patients treated with RC, and identified that the SVM model with 14 variables had the best performance and high levels of clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RAY完成签到,获得积分10
刚刚
1秒前
星辰大海应助Zetlynn采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
CCL应助科研通管家采纳,获得40
2秒前
yookia应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
万能图书馆应助ttsong2采纳,获得10
2秒前
2秒前
2秒前
3秒前
sdfdzhang完成签到 ,获得积分0
3秒前
善学以致用应助McbxM采纳,获得10
4秒前
我是老大应助lueluelue采纳,获得10
4秒前
Alvin发布了新的文献求助10
5秒前
6秒前
liwj完成签到,获得积分10
7秒前
12345678发布了新的文献求助10
7秒前
wuming完成签到,获得积分10
8秒前
英姑应助奋斗的紫易采纳,获得10
8秒前
Hello应助认真的冰淇淋采纳,获得10
9秒前
9秒前
10秒前
dingz完成签到,获得积分10
10秒前
啦啦啦发布了新的文献求助10
11秒前
McbxM完成签到,获得积分10
12秒前
13秒前
14秒前
淡然的舞仙完成签到,获得积分10
15秒前
McbxM发布了新的文献求助10
16秒前
17秒前
pcr163应助yar采纳,获得50
18秒前
李健应助果壳茉莉拌沙拉采纳,获得10
21秒前
今后应助maomaohappy7采纳,获得10
21秒前
22秒前
沈three发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954525
求助须知:如何正确求助?哪些是违规求助? 3500615
关于积分的说明 11100212
捐赠科研通 3231137
什么是DOI,文献DOI怎么找? 1786269
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719