Using machine learning to develop preoperative model for lymph node metastasis in patients with bladder urothelial carcinoma

医学 膀胱切除术 外科肿瘤学 淋巴结转移 泌尿科 尿路上皮癌 淋巴结 转移 肿瘤科 膀胱癌 放射科 内科学 癌症
作者
Junjie Ji,Tianwei Zhang,Ling Zhu,Yu Yao,Jingchang Mei,Lijiang Sun,Gui-Ming Zhang
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12885-024-12467-4
摘要

Abstract Background Lymph node metastasis (LNM) is associated with worse prognosis in bladder urothelial carcinoma (BUC) patients. This study aimed to develop and validate machine learning (ML) models to preoperatively predict LNM in BUC patients treated with radical cystectomy (RC). Methods We retrospectively collected demographic, pathological, imaging, and laboratory information of BUC patients who underwent RC and bilateral lymphadenectomy in our institution. Patients were randomly categorized into training set and testing set. Five ML algorithms were utilized to establish prediction models. The performance of each model was assessed by the area under the receiver operating characteristic curve (AUC) and accuracy. Finally, we calculated the corresponding variable coefficients based on the optimal model to reveal the contribution of each variable to LNM. Results A total of 524 and 131 BUC patients were finally enrolled into training set and testing set, respectively. We identified that the support vector machine (SVM) model had the best prediction ability with an AUC of 0.934 (95% confidence interval [CI]: 0.903–0.964) and accuracy of 0.916 in the training set, and an AUC of 0.855 (95%CI: 0.777–0.933) and accuracy of 0.809 in the testing set. The SVM model contained 14 predictors, and positive lymph node in imaging contributed the most to the prediction of LNM in BUC patients. Conclusions We developed and validated the ML models to preoperatively predict LNM in BUC patients treated with RC, and identified that the SVM model with 14 variables had the best performance and high levels of clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
T012完成签到,获得积分10
1秒前
Annabelle发布了新的文献求助10
1秒前
棠以秧完成签到 ,获得积分10
3秒前
ding应助abbsdan采纳,获得150
3秒前
思源应助123采纳,获得10
4秒前
郝宝真发布了新的文献求助10
4秒前
PeGe完成签到,获得积分10
9秒前
Frankwei完成签到,获得积分20
9秒前
Ly发布了新的文献求助10
10秒前
Meredith应助清塘夜谈采纳,获得10
10秒前
Annabelle完成签到,获得积分10
10秒前
jiang发布了新的文献求助10
12秒前
杨榆藤完成签到,获得积分10
12秒前
费尔明娜完成签到,获得积分10
14秒前
18秒前
莫若舞完成签到,获得积分10
19秒前
Month完成签到,获得积分10
20秒前
mit完成签到 ,获得积分0
20秒前
zmk发布了新的文献求助10
20秒前
十九完成签到,获得积分20
20秒前
普萘洛尔完成签到,获得积分10
22秒前
Month发布了新的文献求助10
22秒前
无花果应助11采纳,获得10
23秒前
不爱科研完成签到 ,获得积分10
24秒前
一一完成签到,获得积分10
24秒前
24秒前
松谦发布了新的文献求助10
28秒前
29秒前
bkagyin应助starcatcher采纳,获得10
29秒前
共享精神应助zmk采纳,获得10
31秒前
32秒前
32秒前
凯蒂完成签到,获得积分10
33秒前
koutianle发布了新的文献求助10
35秒前
39秒前
归零儿完成签到,获得积分10
40秒前
猫又完成签到,获得积分10
41秒前
42秒前
随机子发布了新的文献求助60
42秒前
shelmon发布了新的文献求助30
44秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912912
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388