Damage Identification of Chemical Milling Stiffened Panel Based on Lamb Wave and Inception-Convolutional Neural Network

卷积神经网络 噪音(视频) 干扰(通信) 人工神经网络 超声波传感器 波前 声学 工程类 计算机科学 算法 人工智能 光学 图像(数学) 物理 电信 频道(广播)
作者
Xie Jiang,Xize Chen,Wensong Zhou,Xiaojun Jiang,Jiefeng Xie,Xin Zhang,Yuxiang Zhang,Zhengwei Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12
标识
DOI:10.1109/tim.2024.3398089
摘要

Mode conversion and wave scattering will occur when ultrasonic guided wave (GW) propagates to the stiffener which makes the received signals complex and poorly interpretable, thus limiting the application of GW in damage detection of chemical milling stiffened panel (CMSP). This paper proposes a deep learning (DL) model Inception-convolutional neural network (CNN) to realize damage localization of CMSP. Firstly, a model analysis was conducted to get the resonant frequency of the piezoelectric wafer and the mode conversion at the stiffener was explored through numerical analysis. Then, the identification effect based on conventional damage imaging method was discussed. Lastly, for training the proposed DL model, the residual signals were collected as a dataset after setting damages in different zones of CMSP. The model was then trained and tested and its performance was analyzed and demonstrated. The results indicate that S0 mode has a greater conversion degree than A0 mode at the stiffener; GWs do not propagate in the form of a uniform wavefront on CMSP and conventional damage imaging methods based on wave propagation paths are not applicable to CMSP; The model proposed can automatically extract the signal spatial features, accurately identify the corresponding damage zone and its accuracy reaches 94% in the testing set. As the input features increase, the classification ability of the model will be further improved. The noise interference experiment shows that the model has good noise resistance performance at noise levels below 15%, indicating the feasibility of the model for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大妙妙完成签到 ,获得积分10
刚刚
甜甜灵槐发布了新的文献求助10
1秒前
2秒前
_呱_应助LLL采纳,获得200
2秒前
2秒前
拼搏尔风完成签到,获得积分10
2秒前
2秒前
3秒前
zlw完成签到,获得积分10
3秒前
3秒前
天天快乐应助詹姆斯采纳,获得10
3秒前
顾矜应助做饭不咸采纳,获得10
3秒前
xi完成签到,获得积分20
4秒前
LI完成签到,获得积分10
4秒前
kilig发布了新的文献求助10
5秒前
见素完成签到,获得积分10
5秒前
花玥鹿完成签到,获得积分10
5秒前
Xz123关注了科研通微信公众号
5秒前
汉堡包应助why采纳,获得10
6秒前
ZzZz发布了新的文献求助10
6秒前
初之发布了新的文献求助10
7秒前
拿捏陕科大完成签到,获得积分10
7秒前
乐乐应助mumu采纳,获得10
7秒前
7秒前
陆千万发布了新的文献求助10
7秒前
高兴白开水完成签到,获得积分10
7秒前
Hang发布了新的文献求助10
8秒前
Erick爱喝粥完成签到,获得积分10
8秒前
22222发布了新的文献求助10
8秒前
chaozihao完成签到,获得积分10
8秒前
hyw完成签到 ,获得积分10
8秒前
haoran发布了新的文献求助10
9秒前
fei完成签到,获得积分10
10秒前
进击的铁蛋应助笠柚采纳,获得10
10秒前
10秒前
12rcli完成签到,获得积分10
10秒前
难过的牛马完成签到 ,获得积分10
11秒前
11秒前
11秒前
默默幼南发布了新的文献求助10
12秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227601
求助须知:如何正确求助?哪些是违规求助? 2875589
关于积分的说明 8191848
捐赠科研通 2542829
什么是DOI,文献DOI怎么找? 1373128
科研通“疑难数据库(出版商)”最低求助积分说明 646685
邀请新用户注册赠送积分活动 621178