重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Damage Identification of Chemical Milling Stiffened Panel Based on Lamb Wave and Inception-Convolutional Neural Network

卷积神经网络 噪音(视频) 干扰(通信) 人工神经网络 超声波传感器 波前 声学 工程类 计算机科学 算法 人工智能 光学 图像(数学) 物理 电信 频道(广播)
作者
Xie Jiang,Xize Chen,Wensong Zhou,Xiaojun Jiang,Jiefeng Xie,Xin Zhang,Yuxiang Zhang,Zhengwei Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12
标识
DOI:10.1109/tim.2024.3398089
摘要

Mode conversion and wave scattering will occur when ultrasonic guided wave (GW) propagates to the stiffener which makes the received signals complex and poorly interpretable, thus limiting the application of GW in damage detection of chemical milling stiffened panel (CMSP). This paper proposes a deep learning (DL) model Inception-convolutional neural network (CNN) to realize damage localization of CMSP. Firstly, a model analysis was conducted to get the resonant frequency of the piezoelectric wafer and the mode conversion at the stiffener was explored through numerical analysis. Then, the identification effect based on conventional damage imaging method was discussed. Lastly, for training the proposed DL model, the residual signals were collected as a dataset after setting damages in different zones of CMSP. The model was then trained and tested and its performance was analyzed and demonstrated. The results indicate that S0 mode has a greater conversion degree than A0 mode at the stiffener; GWs do not propagate in the form of a uniform wavefront on CMSP and conventional damage imaging methods based on wave propagation paths are not applicable to CMSP; The model proposed can automatically extract the signal spatial features, accurately identify the corresponding damage zone and its accuracy reaches 94% in the testing set. As the input features increase, the classification ability of the model will be further improved. The noise interference experiment shows that the model has good noise resistance performance at noise levels below 15%, indicating the feasibility of the model for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助赖善若采纳,获得10
刚刚
刚刚
小二郎应助childe采纳,获得10
刚刚
49发布了新的文献求助10
1秒前
完美世界应助Ver_Lec采纳,获得10
1秒前
HUA发布了新的文献求助10
1秒前
科研通AI6应助无私的书翠采纳,获得10
1秒前
乐乐应助鹰隼采纳,获得10
2秒前
孙温柔完成签到,获得积分10
2秒前
五条发布了新的文献求助10
3秒前
1218完成签到,获得积分10
3秒前
飞翔的霸天哥应助穆穆穆采纳,获得30
4秒前
小二郎应助哈哈哈哈哈采纳,获得10
5秒前
安卡发布了新的文献求助10
6秒前
baoleijia发布了新的文献求助10
6秒前
08龙完成签到,获得积分10
6秒前
SciGPT应助冰雪采纳,获得10
6秒前
6秒前
cc发布了新的文献求助10
7秒前
7秒前
刘亦菲发布了新的文献求助10
7秒前
zjh发布了新的文献求助10
8秒前
8秒前
8秒前
CS发布了新的文献求助10
9秒前
HUA完成签到,获得积分10
9秒前
可爱的函函应助开心依珊采纳,获得10
9秒前
ysw完成签到,获得积分10
10秒前
万能图书馆应助王晓采纳,获得10
10秒前
10秒前
QYQX完成签到,获得积分20
10秒前
11秒前
打打应助mitsuk采纳,获得10
11秒前
12秒前
Chao发布了新的文献求助10
12秒前
ww完成签到,获得积分10
12秒前
今后应助Yayaqq采纳,获得10
12秒前
欢呼的疾完成签到,获得积分20
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466797
求助须知:如何正确求助?哪些是违规求助? 4570521
关于积分的说明 14325828
捐赠科研通 4497083
什么是DOI,文献DOI怎么找? 2463730
邀请新用户注册赠送积分活动 1452656
关于科研通互助平台的介绍 1427590