Damage Identification of Chemical Milling Stiffened Panel Based on Lamb Wave and Inception-Convolutional Neural Network

卷积神经网络 噪音(视频) 干扰(通信) 人工神经网络 超声波传感器 波前 声学 工程类 计算机科学 算法 人工智能 光学 图像(数学) 物理 电信 频道(广播)
作者
Xie Jiang,Xize Chen,Wensong Zhou,Xiaojun Jiang,Jiefeng Xie,Xin Zhang,Yuxiang Zhang,Zhengwei Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12
标识
DOI:10.1109/tim.2024.3398089
摘要

Mode conversion and wave scattering will occur when ultrasonic guided wave (GW) propagates to the stiffener which makes the received signals complex and poorly interpretable, thus limiting the application of GW in damage detection of chemical milling stiffened panel (CMSP). This paper proposes a deep learning (DL) model Inception-convolutional neural network (CNN) to realize damage localization of CMSP. Firstly, a model analysis was conducted to get the resonant frequency of the piezoelectric wafer and the mode conversion at the stiffener was explored through numerical analysis. Then, the identification effect based on conventional damage imaging method was discussed. Lastly, for training the proposed DL model, the residual signals were collected as a dataset after setting damages in different zones of CMSP. The model was then trained and tested and its performance was analyzed and demonstrated. The results indicate that S0 mode has a greater conversion degree than A0 mode at the stiffener; GWs do not propagate in the form of a uniform wavefront on CMSP and conventional damage imaging methods based on wave propagation paths are not applicable to CMSP; The model proposed can automatically extract the signal spatial features, accurately identify the corresponding damage zone and its accuracy reaches 94% in the testing set. As the input features increase, the classification ability of the model will be further improved. The noise interference experiment shows that the model has good noise resistance performance at noise levels below 15%, indicating the feasibility of the model for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
机智的紫丝完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
谢志超完成签到,获得积分10
1秒前
正直尔曼发布了新的文献求助20
3秒前
整齐唯雪发布了新的文献求助10
4秒前
烟花应助诺贝尔一直讲采纳,获得30
4秒前
ding应助谷雨秋采纳,获得10
6秒前
7秒前
8秒前
善学以致用应助汤圆采纳,获得10
9秒前
收手吧大哥应助小白白采纳,获得10
9秒前
9秒前
11秒前
lll完成签到,获得积分10
11秒前
独孤阳光完成签到,获得积分10
12秒前
格物致知发布了新的文献求助10
13秒前
科研互通完成签到,获得积分10
14秒前
15秒前
15秒前
一耶随风完成签到,获得积分10
16秒前
魏笑白发布了新的文献求助10
16秒前
16秒前
16秒前
科研通AI2S应助hh采纳,获得10
17秒前
Owen应助神不搞科研采纳,获得10
17秒前
大黄发布了新的文献求助10
18秒前
loulan完成签到,获得积分10
20秒前
20秒前
谷雨秋发布了新的文献求助10
21秒前
21秒前
科目三应助幸福的向彤采纳,获得10
22秒前
汤圆发布了新的文献求助10
22秒前
ccq完成签到,获得积分20
23秒前
23秒前
雁阵惊寒发布了新的文献求助10
24秒前
R_发布了新的文献求助10
25秒前
denny发布了新的文献求助30
26秒前
26秒前
1212发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673