Accelerating Polymer Discovery with Uncertainty-Guided PGCNN: Explainable AI for Predicting Properties and Mechanistic Insights

计算机科学 生化工程 数据科学 人工智能 工程类
作者
Shuyu Wang,Hongxing Yue,Xiaoming Yuan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (14): 5500-5509
标识
DOI:10.1021/acs.jcim.4c00555
摘要

Deep learning holds great potential for expediting the discovery of new polymers from the vast chemical space. However, accurately predicting polymer properties for practical applications based on their monomer composition has long been a challenge. The main obstacles include insufficient data, ineffective representation encoding, and lack of explainability. To address these issues, we propose an interpretable model called the Polymer Graph Convolutional Neural Network (PGCNN) that can accurately predict various polymer properties. This model is trained using the RadonPy data set and validated using experimental data samples. By integrating evidential deep learning with the model, we can quantify the uncertainty of predictions and enable sample-efficient training through uncertainty-guided active learning. Additionally, we demonstrate that the global attention of the graph embedding can aid in discovering underlying physical principles by identifying important functional groups within polymers and associating them with specific material attributes. Lastly, we explore the high-throughput screening capability of our model by rapidly identifying thousands of promising candidates with low and high thermal conductivity from a pool of one million hypothetical polymers. In summary, our research not only advances our mechanistic understanding of polymers using explainable AI but also paves the way for data-driven trustworthy discovery of polymer materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的寻琴完成签到,获得积分10
刚刚
1秒前
丰富的大地完成签到,获得积分10
1秒前
1秒前
Knight发布了新的文献求助10
2秒前
犬狗狗完成签到 ,获得积分10
3秒前
123PY完成签到,获得积分10
3秒前
123456发布了新的文献求助10
4秒前
白敬亭完成签到,获得积分10
5秒前
hello完成签到,获得积分10
5秒前
开放磬发布了新的文献求助10
6秒前
6秒前
陈祥发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
行走的绅士完成签到,获得积分10
7秒前
怡然云朵发布了新的文献求助10
8秒前
CXSCXD完成签到,获得积分10
8秒前
9秒前
子非鱼完成签到,获得积分10
10秒前
皮灵犀发布了新的文献求助10
10秒前
10秒前
10秒前
佳J发布了新的文献求助10
11秒前
liukang172发布了新的文献求助10
11秒前
6666完成签到,获得积分10
11秒前
Fanfan完成签到 ,获得积分10
11秒前
健壮寄真发布了新的文献求助10
12秒前
monkey1976发布了新的文献求助10
12秒前
坛子完成签到,获得积分10
12秒前
Ava应助TS6539采纳,获得10
12秒前
123123发布了新的文献求助30
13秒前
开放磬完成签到,获得积分10
13秒前
小颉江二郎完成签到,获得积分10
13秒前
灵宝宝完成签到,获得积分10
14秒前
骑着蚂蚁追大象完成签到,获得积分10
14秒前
逝月完成签到,获得积分10
14秒前
千陽完成签到 ,获得积分10
14秒前
陈祥完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855