Activating angiotensin-converting enzyme 2 (ACE2) is an important player in the pathogenesis of septic-related acute respiratory distress syndrome (ARDS). Rosmarinic acid (RA) as a prominent polyphenolic secondary metabolite derived from Rosmarinus officinalis modulates ACE2 in sepsis remains unclear, although its impact on ACE inhibition and septic-associated lung injury has been explored. The study investigated the ACE2 expression in lipopolysaccharide (LPS)-induced lungs in mice and BEAS2B cells. Additionally, molecular docking, protein-protein interaction (PPI) network analysis, and western blotting were employed to predict and evaluate the molecular mechanism of RA on LPS-induced ferroptosis in vivo and in vitro. LPS-induced glutathione peroxidase 4 (GPX4) downregulation, ACE/ACE2 imbalance, and alteration of frequency of breathing (BPM), minute volume (MV), and the expiratory flow at 50% expired volume (EF