数学
李普希茨连续性
去模糊
单调多边形
趋同(经济学)
惯性参考系
收敛速度
算法
图像(数学)
应用数学
工作(物理)
数学优化
数学分析
计算机科学
几何学
人工智能
图像处理
图像复原
物理
机械工程
计算机网络
频道(广播)
量子力学
经济增长
工程类
经济
作者
Papatsara Inkrong,Prasit Cholamjiak
摘要
In this work, we propose a novel class of forward‐backward‐forward algorithms for solving monotone inclusion problems. Our approach incorporates a self‐adaptive technique to eliminate the need for explicitly selecting Lipschitz assumptions and utilizes two‐step inertial extrapolations to enhance the convergence rate of the algorithm. We establish a weak convergence theorem under mild assumptions. Furthermore, we conduct numerical tests on image deblurring and data classification as practical applications. The experimental results demonstrate that our algorithm surpasses some existing methods in the literature which shows its superior performance and effectiveness.
科研通智能强力驱动
Strongly Powered by AbleSci AI