耐久性
石墨烯
材料科学
弹性(物理)
复合材料
微观结构
纳米技术
作者
Xunxiang Hu,Yulian Tang,Lingling Tan,Fan Zeng,Xianzhang Wu,Shengrong Yang
标识
DOI:10.1016/j.jcis.2024.05.240
摘要
Ultralight graphene aerogels have gained extensive recognition in the impact protection field. However, attaining both elasticity and durability at low material density is challenging due to their intrinsic conflicts. Inspired by the mantis ootheca, we present a simultaneous improvement in the elasticity, durability, and density restrictions of ultralight graphene aerogels via constructing a multiscale honeycomb microstructure (MHM) within the graphene skeleton. This approach enables resulting graphene aerogel to achieve a strength per unit volume of 284.6cm3 mg−1, the ability to recover its shape within 10 ms after an impact at 3.569 m/s, and maintain 97.2 % of its sample height after 20,000 cycles at 90 % strain. The operand analyses and calculation results reveal that the MHM structure facilitates this aerogel's dual-stage stress transfer pathway. Initially, the macroscale honeycomb structure (millimeter-scale) of the graphene aerogels bear and transmit stress to the surrounding regions, followed by the microscale honeycomb structure (micron-scale) deformation to convert stress kinetic energy into elastic potential energy. This two-stage stress transition mechanism of the MHM structure can effectively mitigate excessive local stress and suppress strain localization, thus providing remarkable elasticity and durability. Ultimately, the obtained graphene aerogel demonstrates promising applications as a fall height detection device and impact protective material.
科研通智能强力驱动
Strongly Powered by AbleSci AI