Clarify the contribution of shallow and deep interfacial traps to the transistor-type optoelectronic synaptic device

材料科学 光电子学 晶体管 薄膜晶体管 纳米技术 图层(电子) 电气工程 电压 工程类
作者
Jiyuan Wei,Liangqin Zeng,Lijia Chen,Yanlian Lei,Lixiang Chen,Qiaoming Zhang
出处
期刊:Surfaces and Interfaces [Elsevier]
卷期号:51: 104587-104587
标识
DOI:10.1016/j.surfin.2024.104587
摘要

Recently, transistor-type optoelectronic synaptic device has garnered widespread attention due to its high potential for realizing artificial visual systems and neuromorphic computing. However, some basic mechanisms, such as the contribution of shallow and deep traps on the synaptic behavior, are still not fully understood. In this work, a channel-only transistor-type optoelectronic synaptic device has been employed as platform to clarify the contribution of shallow and deep traps to the synaptic response. We firstly demonstrated that the channel-only transistor-type synaptic device can successfully mimic almost all synaptic behavior, such as excitatory postsynaptic current spike (ΔEPSC), paired-pulse facilitation (PPF), etc. And then, two individual double-exponential models have been employed to fit the generation and decay part of ΔEPSC response to distinguish the role of shallow and deep traps on the synaptic behavior. The results suggest that the shallow trap gives rise to the fast response in both generation and decay component, and the deep trap contributes to the slow component in both generation and decay part. In addition, the number of deep traps is critical to determine the metastable current in the decay part because of the photogating effect. This explanation has been further confirmed by increasing the number of electrons that can be captured by increasing the light pulse intensity, and tuning the number of trap sites by storing the synaptic device in ambient environment or functionalizing the SiO2 surface with SAM agent containing strong electron withdrawing end group. Thus, this work not only clarify the contribution of shallow and deep traps, but also provide several strategies to tune the synaptic behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助加菲丰丰采纳,获得10
2秒前
2秒前
4秒前
迷人素完成签到 ,获得积分10
4秒前
隐形迎松完成签到 ,获得积分10
4秒前
5秒前
Watsun发布了新的文献求助10
6秒前
山晴完成签到,获得积分10
6秒前
Pann发布了新的文献求助10
7秒前
quhayley应助孤独如曼采纳,获得10
8秒前
8秒前
烟花应助三日宝采纳,获得10
11秒前
CipherSage应助可靠的寒风采纳,获得10
11秒前
树欲静而风不止完成签到,获得积分10
12秒前
Lizhe完成签到,获得积分20
13秒前
14秒前
十三完成签到,获得积分20
14秒前
善学以致用应助cyj采纳,获得10
15秒前
FashionBoy应助科研小锄头采纳,获得50
15秒前
jie完成签到,获得积分20
16秒前
junyang完成签到,获得积分10
18秒前
Phyllis完成签到,获得积分10
18秒前
19秒前
烟花应助背后访风采纳,获得10
20秒前
naturehome发布了新的文献求助10
20秒前
21秒前
Amor发布了新的文献求助10
22秒前
rumeng完成签到,获得积分10
22秒前
zen应助21采纳,获得10
23秒前
科研通AI2S应助RONG采纳,获得10
24秒前
25秒前
谭显芝发布了新的文献求助10
25秒前
传奇3应助2123121321321采纳,获得10
27秒前
Pann完成签到 ,获得积分10
28秒前
深情安青应助smile采纳,获得20
29秒前
30秒前
Susie发布了新的文献求助10
30秒前
少年发布了新的文献求助10
30秒前
fanny完成签到,获得积分10
30秒前
岁城完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706