Clarify the contribution of shallow and deep interfacial traps to the transistor-type optoelectronic synaptic device

材料科学 光电子学 晶体管 薄膜晶体管 纳米技术 图层(电子) 电气工程 电压 工程类
作者
Jiyuan Wei,Liangqin Zeng,Lijia Chen,Yanlian Lei,Lixiang Chen,Qiaoming Zhang
出处
期刊:Surfaces and Interfaces [Elsevier]
卷期号:51: 104587-104587 被引量:4
标识
DOI:10.1016/j.surfin.2024.104587
摘要

Recently, transistor-type optoelectronic synaptic device has garnered widespread attention due to its high potential for realizing artificial visual systems and neuromorphic computing. However, some basic mechanisms, such as the contribution of shallow and deep traps on the synaptic behavior, are still not fully understood. In this work, a channel-only transistor-type optoelectronic synaptic device has been employed as platform to clarify the contribution of shallow and deep traps to the synaptic response. We firstly demonstrated that the channel-only transistor-type synaptic device can successfully mimic almost all synaptic behavior, such as excitatory postsynaptic current spike (ΔEPSC), paired-pulse facilitation (PPF), etc. And then, two individual double-exponential models have been employed to fit the generation and decay part of ΔEPSC response to distinguish the role of shallow and deep traps on the synaptic behavior. The results suggest that the shallow trap gives rise to the fast response in both generation and decay component, and the deep trap contributes to the slow component in both generation and decay part. In addition, the number of deep traps is critical to determine the metastable current in the decay part because of the photogating effect. This explanation has been further confirmed by increasing the number of electrons that can be captured by increasing the light pulse intensity, and tuning the number of trap sites by storing the synaptic device in ambient environment or functionalizing the SiO2 surface with SAM agent containing strong electron withdrawing end group. Thus, this work not only clarify the contribution of shallow and deep traps, but also provide several strategies to tune the synaptic behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AWGTT完成签到,获得积分10
刚刚
淡淡青枫完成签到,获得积分10
刚刚
wxy完成签到,获得积分10
刚刚
1秒前
1秒前
njmuzyzy发布了新的文献求助10
1秒前
宁静致远完成签到,获得积分10
1秒前
hecarli完成签到,获得积分0
2秒前
ccc1429536273完成签到,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
3秒前
默默的冷亦完成签到 ,获得积分10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
iNk应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
tang应助科研通管家采纳,获得10
3秒前
郭笑颍完成签到,获得积分10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
埋头赶路应助科研通管家采纳,获得10
3秒前
tang应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
栗子完成签到,获得积分10
4秒前
求助人员应助科研通管家采纳,获得30
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
共享精神应助Qun采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
埋头赶路应助科研通管家采纳,获得10
4秒前
几酌应助科研通管家采纳,获得20
4秒前
852应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707903
求助须知:如何正确求助?哪些是违规求助? 5186065
关于积分的说明 15251923
捐赠科研通 4861066
什么是DOI,文献DOI怎么找? 2609196
邀请新用户注册赠送积分活动 1559865
关于科研通互助平台的介绍 1517651