Clarify the contribution of shallow and deep interfacial traps to the transistor-type optoelectronic synaptic device

材料科学 光电子学 晶体管 薄膜晶体管 纳米技术 图层(电子) 电气工程 电压 工程类
作者
Jiyuan Wei,Liangqin Zeng,Lijia Chen,Yanlian Lei,Lixiang Chen,Qiaoming Zhang
出处
期刊:Surfaces and Interfaces [Elsevier]
卷期号:51: 104587-104587
标识
DOI:10.1016/j.surfin.2024.104587
摘要

Recently, transistor-type optoelectronic synaptic device has garnered widespread attention due to its high potential for realizing artificial visual systems and neuromorphic computing. However, some basic mechanisms, such as the contribution of shallow and deep traps on the synaptic behavior, are still not fully understood. In this work, a channel-only transistor-type optoelectronic synaptic device has been employed as platform to clarify the contribution of shallow and deep traps to the synaptic response. We firstly demonstrated that the channel-only transistor-type synaptic device can successfully mimic almost all synaptic behavior, such as excitatory postsynaptic current spike (ΔEPSC), paired-pulse facilitation (PPF), etc. And then, two individual double-exponential models have been employed to fit the generation and decay part of ΔEPSC response to distinguish the role of shallow and deep traps on the synaptic behavior. The results suggest that the shallow trap gives rise to the fast response in both generation and decay component, and the deep trap contributes to the slow component in both generation and decay part. In addition, the number of deep traps is critical to determine the metastable current in the decay part because of the photogating effect. This explanation has been further confirmed by increasing the number of electrons that can be captured by increasing the light pulse intensity, and tuning the number of trap sites by storing the synaptic device in ambient environment or functionalizing the SiO2 surface with SAM agent containing strong electron withdrawing end group. Thus, this work not only clarify the contribution of shallow and deep traps, but also provide several strategies to tune the synaptic behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋之月完成签到,获得积分10
刚刚
1秒前
cheche关注了科研通微信公众号
1秒前
2秒前
科研小民工应助kento采纳,获得50
3秒前
完美世界应助小萌采纳,获得10
4秒前
4秒前
gaoww完成签到,获得积分10
4秒前
5秒前
WZ0904发布了新的文献求助10
5秒前
5秒前
lab完成签到 ,获得积分0
5秒前
小蘑菇应助今今采纳,获得10
6秒前
CodeCraft应助秋之月采纳,获得10
6秒前
I1waml完成签到 ,获得积分10
6秒前
6秒前
guygun完成签到,获得积分10
6秒前
zho发布了新的文献求助10
7秒前
独特亦旋发布了新的文献求助10
7秒前
8秒前
研友_LOqqmZ完成签到,获得积分10
9秒前
9秒前
英俊的铭应助文献查找采纳,获得10
9秒前
solobang发布了新的文献求助10
9秒前
Jasper应助老迟到的书雁采纳,获得10
12秒前
orixero应助小二采纳,获得10
12秒前
13秒前
13秒前
simple完成签到,获得积分10
13秒前
caoyy发布了新的文献求助10
13秒前
赵小可可可可完成签到,获得积分10
15秒前
小萌发布了新的文献求助10
16秒前
weiv发布了新的文献求助10
16秒前
海科科发布了新的文献求助10
17秒前
陌上花完成签到,获得积分10
17秒前
我是站长才怪应助微笑襄采纳,获得10
18秒前
caoyy完成签到,获得积分10
19秒前
JamesPei应助独特亦旋采纳,获得10
20秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824