已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How do visual and cognitive non-driving related tasks affect drivers’ visual attention and takeover performance in conditionally automated driving?

情感(语言学) 认知 视觉注意 认知心理学 视觉搜索 心理学 人为因素与人体工程学 毒物控制 计算机科学 应用心理学 沟通 医学 环境卫生 神经科学
作者
Hengyan Pan,William Payre,Yonggang Wang,Zhixiang Gao
出处
期刊:Journal of Transportation Safety & Security [Informa]
卷期号:: 1-27 被引量:2
标识
DOI:10.1080/19439962.2024.2368118
摘要

This study examines changes in visual attention during drivers' engagement in visual or cognitive NDRTs during conditionally automated driving, and determines how these changes affect takeover performance. Seventy-five participants took part in a driving simulator study, performing three pre-takeover tasks: the three pre-takeover tasks: an auditory-imagery-verbal task (cognitive NDRT); a video-watching task (visual NDRT); and a monitoring task (baseline/non NDRT). Also, there were two hazardous events (breakdown or sudden merging of the vehicle ahead) leading to takeover requests issued with 7-s or 5-s lead times. The results revealed that NDRTs negatively affected visual attention, which caused lower saccade frequency between different areas of interest and shorter saccade amplitude. Drivers paid more visual attention to the road ahead and in-vehicle information system when performing cognitive and visual NDRTs, respectively. The visual attention of drivers performing NDRTs negatively affected takeover performance (e,g longer reaction time, heavier maximal brake pedal input, etc.). The reduction in takeover request lead time impaired takeover performance. The findings will support the design of eye tracker-based "out-of-loop" discrimination techniques and human-machine interaction interfaces in automated vehicles. This study contributes to the literature by examining how different types of NDRTs affect takeover performance, specifically focusing on drivers' visual attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
Chris发布了新的文献求助10
7秒前
汤汤完成签到 ,获得积分10
8秒前
科研小白爱科研完成签到,获得积分10
12秒前
13秒前
15秒前
15秒前
16秒前
liu发布了新的文献求助10
19秒前
19秒前
20秒前
James发布了新的文献求助10
21秒前
23秒前
领导范儿应助阿文采纳,获得10
23秒前
陶醉健柏完成签到,获得积分10
25秒前
居蓝完成签到 ,获得积分10
25秒前
26秒前
27秒前
陶醉健柏发布了新的文献求助10
29秒前
Grayson发布了新的文献求助10
29秒前
汉堡包应助芷兰丁香采纳,获得10
30秒前
zhuiyu完成签到,获得积分10
30秒前
cc发布了新的文献求助10
31秒前
春夏爱科研完成签到,获得积分10
32秒前
坦率的丹烟完成签到 ,获得积分10
32秒前
土豆你个西红柿完成签到 ,获得积分10
32秒前
性感的小蚂蚁完成签到,获得积分10
33秒前
August完成签到,获得积分10
39秒前
温暖海露发布了新的文献求助10
41秒前
Grayson完成签到,获得积分10
41秒前
cc关闭了cc文献求助
42秒前
張医铄完成签到,获得积分10
44秒前
啥文献找不到完成签到 ,获得积分10
51秒前
机智的雪糕完成签到,获得积分10
54秒前
55秒前
丘比特应助口香糖探长采纳,获得30
1分钟前
1分钟前
cc只会嘻嘻完成签到 ,获得积分10
1分钟前
CipherSage应助haha采纳,获得30
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555627
求助须知:如何正确求助?哪些是违规求助? 3131330
关于积分的说明 9390563
捐赠科研通 2830968
什么是DOI,文献DOI怎么找? 1556243
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803