Signaling Targeting Cost Through List Price

联营 激励 价格歧视 透明度(行为) 搜索成本 定价策略 业务 经济 产业组织 限价 经济盈余 微观经济学 计算机科学 价格水平 货币经济学 市场经济 计算机安全 人工智能 福利
作者
Peiwen Yu,Jiahua Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2023.02031
摘要

Data analytics enable firms to offer personalized prices to targeted consumers but at a cost. We study a competitive personalized pricing game where the entrant is uncertain about the incumbent’s targeting cost. We demonstrate that implementing personalized pricing through a “list price-discount” scheme allows the incumbent to signal its targeting cost via the list price. This signaling mechanism is effective because the list price serves as a price ceiling, which limits the incumbent’s ability to extract consumer surplus through personalized discounts. The high-cost incumbent can strategically set its list price below the full-information level to separate itself from the low-cost incumbent. Interestingly, the high-cost incumbent prefers separating over pooling only when there is a moderate variation in the incumbents’ targeting costs. Personalized pricing can affect firms differently, benefiting the incumbent but hurting the entrant. Asymmetric information about targeting costs weakens the high-cost incumbent’s incentive to offer personalized discounts, resulting in lower total targeting costs and potentially increasing social surplus. These findings shed light on government regulations and transparency policies regarding personalized pricing. This paper was accepted by Dmitri Kuksov, marketing. Funding: P. Yu was supported by the National Natural Science Foundation of China [Grants 72371038 and 72033003]. J. Zhang was supported by the National Natural Science Foundation of China [Grants 72371061 and 72232001]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/mnsc.2023.02031 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYZYbigZY发布了新的文献求助10
刚刚
21完成签到 ,获得积分10
1秒前
大模型应助无力大白菜采纳,获得10
1秒前
听闻墨笙完成签到,获得积分10
2秒前
柔弱山芙完成签到,获得积分10
3秒前
牛牛眉目完成签到,获得积分10
4秒前
亦安完成签到,获得积分10
8秒前
Rondab应助Alex采纳,获得200
9秒前
朝天椒完成签到,获得积分10
9秒前
ZYZYbigZY完成签到,获得积分10
10秒前
逗小妹完成签到 ,获得积分10
10秒前
仁爱的寻凝完成签到,获得积分10
12秒前
戈屿完成签到 ,获得积分10
15秒前
李李关注了科研通微信公众号
16秒前
xsss完成签到,获得积分10
17秒前
18秒前
lily完成签到,获得积分10
20秒前
眼睛大唯雪完成签到 ,获得积分10
20秒前
21秒前
Owen应助GgXxx采纳,获得10
21秒前
lyn发布了新的文献求助10
22秒前
太渊完成签到 ,获得积分10
22秒前
闲庭发布了新的文献求助10
23秒前
隐形曼青应助Derik采纳,获得10
25秒前
薄荷味的soda完成签到,获得积分10
30秒前
超级的诗兰完成签到,获得积分10
30秒前
老阎应助花痴的沂采纳,获得30
31秒前
SciGPT应助domingo采纳,获得10
31秒前
hhhhhhhhh完成签到,获得积分10
32秒前
arcremnant完成签到,获得积分10
33秒前
白河完成签到,获得积分10
33秒前
release枫完成签到,获得积分10
34秒前
36秒前
38秒前
李李发布了新的文献求助30
41秒前
MMM完成签到 ,获得积分10
41秒前
彩色大碗完成签到,获得积分10
41秒前
Derik发布了新的文献求助10
41秒前
42秒前
我是老大应助科研通管家采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343