Innovative Bearing Fault Diagnosis Method: Combining Swin Transformer Deep Learning and Acoustic Emission Technology

声发射 变压器 方位(导航) 深度学习 断层(地质) 计算机科学 工程类 声学 地震学 人工智能 地质学 电气工程 物理 电压
作者
Peng Jiang,Jinlei Xia,Wei Li,Chenqi Xu,Wenyu Sun
出处
期刊:ASCE-ASME journal of risk and uncertainty in engineering systems, [ASM International]
卷期号:11 (1)
标识
DOI:10.1115/1.4065754
摘要

Abstract Wind power generation, as a paragon of clean energy, places great importance on the reliability of its equipment. Bearings, in particular, as the core components of wind turbines, have a direct correlation with the stable operation and economic benefits of the entire system. Against this backdrop, addressing the core challenges in the field of bearing fault diagnosis, an innovative fault diagnosis method has been proposed. For the first time, the Swin Transformer deep learning model is combined with acoustic emission (AE) technology, and through advanced signal processing techniques, bearing signals are transformed into filter banks (FBank) feature inputs for the model, effectively achieving precise fault detection in low-speed, heavy-load bearings. With extensive validation on laboratory data of low-speed, heavy-load bearings and the Case Western Reserve University (CWRU) bearing dataset, this method has achieved significant results in identifying four main damage categories. In-depth comparative analysis shows that (1) the improved Swin Transformer achieved an accuracy of 98.6% on the acoustic emission signal laboratory dataset, performing well under data imbalance conditions. (2) It achieved an accuracy of 95.63% on the vibration signal CWRU dataset, demonstrating good generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yolo完成签到 ,获得积分10
1秒前
niccer发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
jianhan发布了新的文献求助10
3秒前
5秒前
奚斌完成签到,获得积分10
5秒前
大鲸在游泳完成签到,获得积分10
6秒前
7秒前
9秒前
棉花糖吖吖吖完成签到 ,获得积分10
9秒前
tutu发布了新的文献求助10
11秒前
12秒前
12秒前
加快步伐发布了新的文献求助10
12秒前
酷波er应助欢喜的晓霜采纳,获得10
13秒前
Revie完成签到 ,获得积分10
14秒前
JunZhuoXiao发布了新的文献求助10
15秒前
17秒前
諵十一完成签到,获得积分10
17秒前
纪鹏飞完成签到,获得积分10
18秒前
18秒前
Hengjian_Pu发布了新的文献求助10
19秒前
21秒前
21秒前
melon完成签到,获得积分10
23秒前
reds发布了新的文献求助10
23秒前
000发布了新的文献求助10
24秒前
大个应助啦啦啦采纳,获得30
25秒前
25秒前
Revie发布了新的文献求助10
25秒前
26秒前
混子完成签到,获得积分10
26秒前
李可爱发布了新的文献求助10
28秒前
29秒前
wy完成签到,获得积分10
30秒前
31秒前
香蕉觅云应助雪雪儿采纳,获得10
32秒前
彭于晏应助悲凉的妙松采纳,获得10
34秒前
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309