A review of data-driven whole-life state of health prediction for lithium-ion batteries: Data preprocessing, aging characteristics, algorithms, and future challenges

健康状况 计算机科学 健康管理体系 预处理器 电池(电) 控制重构 可靠性工程 数据挖掘 工程类 人工智能 嵌入式系统 物理 量子力学 医学 替代医学 病理 功率(物理)
作者
Yanxin Xie,Shunli Wang,Gexiang Zhang,Paul Takyi‐Aninakwa,Carlos Fernández,Frede Blaabjerg
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:97: 630-649 被引量:3
标识
DOI:10.1016/j.jechem.2024.06.017
摘要

Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems (BMSs) that efficiently manage the batteries. This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate. Throughout their whole life cycle, lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials. This degradation is reflected in the state of health (SOH) assessment. Therefore, this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years, highlighting common research focuses rooted in data-driven methods. It delves into various dimensions such as dataset integration and preprocessing, health feature parameter extraction, and the construction of SOH estimation models. These approaches unearth hidden insights within data, addressing the inherent tension between computational complexity and estimation accuracy. To enhance support for in-vehicle implementation, cloud computing, and the echelon technologies of battery recycling, remanufacturing, and reuse, as well as to offer insights into these technologies, a segmented management approach will be introduced in the future. This will encompass source domain data processing, multi-feature factor reconfiguration, hybrid drive modeling, parameter correction mechanisms, and full-time health management. Based on the best SOH estimation outcomes, health strategies tailored to different stages can be devised in the future, leading to the establishment of a comprehensive SOH assessment framework. This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols. This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead. Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods, offering valuable insights for the development of advanced battery management systems and embedded application research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东西南北完成签到,获得积分10
刚刚
66完成签到,获得积分10
2秒前
整齐尔容发布了新的文献求助10
4秒前
打打应助wangqiqi采纳,获得10
7秒前
12秒前
婷婷大侠完成签到,获得积分10
12秒前
13秒前
15秒前
16秒前
尛森完成签到,获得积分10
16秒前
枫尽完成签到,获得积分10
18秒前
Owen应助易安采纳,获得10
18秒前
123123发布了新的文献求助10
18秒前
小景007完成签到,获得积分10
19秒前
小米完成签到,获得积分10
20秒前
顾君如完成签到 ,获得积分10
21秒前
苞米公主发布了新的文献求助10
21秒前
科研通AI2S应助不知道采纳,获得30
21秒前
21秒前
研友_VZG7GZ应助圆潘采纳,获得10
22秒前
冷艳薯片发布了新的文献求助10
26秒前
中书完成签到,获得积分10
26秒前
28秒前
赘婿应助123123采纳,获得10
28秒前
阳光海云发布了新的文献求助30
29秒前
YEEze发布了新的文献求助10
29秒前
29秒前
asd发布了新的文献求助10
29秒前
30秒前
Ava应助淡淡菠萝采纳,获得10
32秒前
不知道发布了新的文献求助30
33秒前
幽默微笑发布了新的文献求助10
34秒前
35秒前
小蘑菇应助H-China采纳,获得10
36秒前
北过完成签到,获得积分10
37秒前
阳光总在风雨后完成签到,获得积分10
37秒前
39秒前
40秒前
caixia28256完成签到,获得积分10
40秒前
高贵季节发布了新的文献求助10
41秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140679
求助须知:如何正确求助?哪些是违规求助? 2791473
关于积分的说明 7799108
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302064
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194