Improving the cooling effect of proton exchange membrane fuel cells by using biomimetic capillary cooling channels based on topology optimization method

质子交换膜燃料电池 拓扑(电路) 材料科学 毛细管作用 拓扑优化 水冷 燃料电池 机械工程 机械 工程类 化学工程 化学 有限元法 复合材料 电气工程 物理 结构工程 生物化学
作者
Yun Liu,Linhui Zeng,Yunxiang Chen,Xiaotian Zhang
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:251: 123633-123633
标识
DOI:10.1016/j.applthermaleng.2024.123633
摘要

Proton exchange membrane hydrogen fuel cells (PEMFCs) are promising energy conversion devices, capable of directly converting chemical energy into electrical energy. However, the ideal operating temperature range for PEMFCs is narrow, and the intense exothermic reactions can easily lead to internal temperatures exceeding optimal levels. Thus, carefully designed cooling channels are crucial to maintain proper operating temperatures. Drawing inspiration from the heat dissipation characteristics of human capillaries on the skin, this study develops three biomimetic capillary cooling channels using a two-objective topology optimization approach. The heat transfer performance of these biomimetic cooling channels is compared against traditional parallel channels (TPC). Additionally, two new flow channel designs with varying inlet and outlet configurations are analyzed. The study examines the impact of different weight factors on the biomimetic cooling channels and uses Pareto frontiers to compare the results from varying weight factors. Findings indicate that topology-optimized biomimetic cooling channels can significantly enhance overall performance. Using a PEC = 1 for TPC as a benchmark, the biomimetic channels achieve average PECs of 1.72, 3.03, and 3.77, indicating superior performance over TPC. Furthermore, the ratio of weight factors also plays a role in the formation of cooling channels. The model with a weight factor ratio of w1:w2 = 0.6:0.4 for double inlets and double outlets arranged in opposite directions shows improved performance. Lastly, this study outlines a design guideline for PEMFC cooling channels based on biomimetic capillary structures and the appropriate ratio of the double objective functions to enhance heat dissipation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MHB应助towerman采纳,获得10
1秒前
Dean发布了新的文献求助10
1秒前
2秒前
加油加油发布了新的文献求助10
2秒前
lili完成签到 ,获得积分10
3秒前
文剑武书生完成签到,获得积分10
4秒前
科研通AI5应助无限鞅采纳,获得10
4秒前
4秒前
852应助木棉采纳,获得10
4秒前
5秒前
卓哥完成签到,获得积分10
6秒前
7秒前
Agan发布了新的文献求助10
7秒前
7秒前
8秒前
morlison发布了新的文献求助10
8秒前
科研通AI5应助金色年华采纳,获得10
10秒前
充电宝应助kh453采纳,获得10
10秒前
正经俠发布了新的文献求助10
10秒前
一衣发布了新的文献求助20
11秒前
可爱的函函应助药学牛马采纳,获得10
11秒前
XM发布了新的文献求助10
11秒前
专注之双完成签到,获得积分10
12秒前
SciGPT应助十一采纳,获得10
12秒前
12秒前
A1234完成签到,获得积分10
13秒前
刘铭晨发布了新的文献求助10
14秒前
孙冉冉完成签到 ,获得积分10
17秒前
17秒前
18秒前
18秒前
大模型应助hhzz采纳,获得10
19秒前
一只智慧喵完成签到,获得积分10
19秒前
科目三应助Fundamental采纳,获得10
20秒前
20秒前
miumiuka发布了新的文献求助10
21秒前
greenPASS666发布了新的文献求助10
22秒前
xuanxuan发布了新的文献求助10
22秒前
zfy发布了新的文献求助10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808