Machine Learning-Based Prediction of Hemoglobinopathies Using Complete Blood Count Data

血红蛋白病 地中海贫血 逻辑回归 血红蛋白A2 医学 内科学 溶血性贫血
作者
Anoeska Schipper,Matthieu Rutten,Adriaan van Gammeren,Cornelis L. Harteveld,Eloísa Urrechaga,Floor Weerkamp,Gijs den Besten,Johannes G. Krabbe,Jennichjen Slomp,Lise Schoonen,Maarten A.C. Broeren,Merel van Wijnen,Mirelle J.A.J. Huijskens,Tamara T. Koopmann,Bram van Ginneken,Ron Kusters,Steef Kurstjens
出处
期刊:Clinical Chemistry [Oxford University Press]
标识
DOI:10.1093/clinchem/hvae081
摘要

Abstract Background Hemoglobinopathies, the most common inherited blood disorder, are frequently underdiagnosed. Early identification of carriers is important for genetic counseling of couples at risk. The aim of this study was to develop and validate a novel machine learning model on a multicenter data set, covering a wide spectrum of hemoglobinopathies based on routine complete blood count (CBC) testing. Methods Hemoglobinopathy test results from 10 322 adults were extracted retrospectively from 8 Dutch laboratories. eXtreme Gradient Boosting (XGB) and logistic regression models were developed to differentiate negative from positive hemoglobinopathy cases, using 7 routine CBC parameters. External validation was conducted on a data set from an independent Dutch laboratory, with an additional external validation on a Spanish data set (n = 2629) specifically for differentiating thalassemia from iron deficiency anemia (IDA). Results The XGB and logistic regression models achieved an area under the receiver operating characteristic (AUROC) of 0.88 and 0.84, respectively, in distinguishing negative from positive hemoglobinopathy cases in the independent external validation set. Subclass analysis showed that the XGB model reached an AUROC of 0.97 for β-thalassemia, 0.98 for α0-thalassemia, 0.95 for homozygous α+-thalassemia, 0.78 for heterozygous α+-thalassemia, and 0.94 for the structural hemoglobin variants Hemoglobin C, Hemoglobin D, Hemoglobin E. Both models attained AUROCs of 0.95 in differentiating IDA from thalassemia. Conclusions Both the XGB and logistic regression model demonstrate high accuracy in predicting a broad range of hemoglobinopathies and are effective in differentiating hemoglobinopathies from IDA. Integration of these models into the laboratory information system facilitates automated hemoglobinopathy detection using routine CBC parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助壮观翠彤采纳,获得10
刚刚
今夕何夕完成签到,获得积分20
2秒前
莫斯卡托完成签到 ,获得积分10
3秒前
今后应助吕露采纳,获得50
3秒前
xiaofei666发布了新的文献求助100
4秒前
6秒前
6秒前
任我尝完成签到,获得积分10
8秒前
9秒前
周周周周周完成签到,获得积分10
9秒前
熠旅发布了新的文献求助10
10秒前
haha发布了新的文献求助10
10秒前
SciGPT应助直率香旋采纳,获得10
11秒前
Orange应助俊秀而采纳,获得10
11秒前
12秒前
13秒前
111完成签到,获得积分10
14秒前
shuyu完成签到 ,获得积分10
15秒前
17秒前
阿亮发布了新的文献求助10
17秒前
18秒前
herdwind完成签到,获得积分10
20秒前
Ava应助小鱼儿采纳,获得10
21秒前
情怀应助lwq采纳,获得10
21秒前
22秒前
忧虑的靖巧完成签到 ,获得积分10
23秒前
fvhharh完成签到,获得积分10
23秒前
24秒前
25秒前
Dr大壮完成签到,获得积分10
25秒前
帝轩泽发布了新的文献求助10
26秒前
26秒前
qty发布了新的文献求助30
26秒前
26秒前
与点完成签到,获得积分10
27秒前
Tingtingzhang发布了新的文献求助10
28秒前
今后应助Xxaaa采纳,获得10
28秒前
小蘑菇应助坚强的严青采纳,获得10
28秒前
FashionBoy应助quit采纳,获得10
29秒前
直率香旋发布了新的文献求助10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721