M2FNet: Multi-modal fusion network for object detection from visible and thermal infrared images

人工智能 情态动词 计算机科学 卷积神经网络 模式识别(心理学) 成对比较 稳健性(进化) 计算机视觉 高光谱成像 公制(单位) 工程类 材料科学 高分子化学 生物化学 化学 运营管理 基因
作者
Chenchen Jiang,Huazhong Ren,Hong Yang,Hongtao Huo,Pengfei Zhu,Zhaoyuan Yao,Jing Li,Min Sun,Shihao Yang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:130: 103918-103918 被引量:1
标识
DOI:10.1016/j.jag.2024.103918
摘要

Fusing multi-modal information from visible (VIS) and thermal infrared (TIR) images is crucial for object detection in fully adapting to varied lighting conditions. However, the existing models usually treat VIS and TIR images as independent information and extract corresponding features from separate networks due to the scarcity of training data with labeled instances from both VIS and TIR registration images. To fill this gap, a novel Multi-Modal Fusion NETwork (M2FNet) based on the Transformer architecture is proposed in this paper, which contains two effective modules: the Union-Modal Attention (UMA) and the Cross-Modal Attention (CMA). The UMA module aggregates multi-spectral features from VIS and TIR images and then extracts multi-modal features via a convolutional neural network (CNN) backbone. The CMA module is designed to learn cross-attention features from VIS and TIR pairwise features by Transformer architecture. Evaluation results by the mean average precision (mAP) metric show that the M2FNet method significantly advances the baseline methods trained using only VIS or TIR images by 10.71 % and 2.97 %, respectively. The increments in mAP are observed in the M2FNet method compared with the existing multi-modal methods on two public datasets. Sensitivity analysis of eight illumination thresholds shows that the M2FNet method presents robustness performance on varied illumination conditions and achieves the maximum increase in accuracy of 25.6 %. Moreover, this method is subsequently applied to a new testing dataset, VI2DA (Visible-Infrared paired Video and Image DAtaset), observed by diverse sensors and platforms for testing the generalization ability of object detectors, which will be publicly available at https://github.com/TIR-OD/Datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
thinking完成签到,获得积分10
1秒前
鲤鱼怀绿完成签到,获得积分10
2秒前
莫莫发布了新的文献求助10
3秒前
心斋发布了新的文献求助10
3秒前
3秒前
Stove完成签到,获得积分10
4秒前
thinking发布了新的文献求助10
4秒前
一只甜桃完成签到,获得积分10
4秒前
Owen应助提莫大将军采纳,获得10
4秒前
科目三应助提莫大将军采纳,获得10
4秒前
华仔应助提莫大将军采纳,获得10
4秒前
5秒前
LYL完成签到,获得积分10
6秒前
6秒前
周一凡完成签到,获得积分10
8秒前
xx关闭了xx文献求助
10秒前
Ava应助某某某采纳,获得10
10秒前
芋圆不圆完成签到,获得积分10
11秒前
共产主义战士完成签到,获得积分10
12秒前
爱听歌柠檬完成签到,获得积分10
12秒前
15秒前
早发论文应助melody采纳,获得10
15秒前
秘密完成签到,获得积分10
16秒前
满眼星辰完成签到 ,获得积分10
17秒前
猫毛完成签到,获得积分10
17秒前
Ulysses完成签到,获得积分10
18秒前
InfoNinja应助拉拉采纳,获得20
18秒前
Ding完成签到,获得积分10
19秒前
20秒前
研友_Z7mAML发布了新的文献求助10
21秒前
22秒前
wu发布了新的文献求助10
23秒前
Bian完成签到,获得积分10
26秒前
27秒前
科研通AI2S应助xiaoxiao采纳,获得10
29秒前
土豆丝发布了新的文献求助10
31秒前
Orange应助科研通管家采纳,获得10
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
乐乐应助科研通管家采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148107
求助须知:如何正确求助?哪些是违规求助? 2799178
关于积分的说明 7833767
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628099
版权声明 601655