M2FNet: Multi-modal fusion network for object detection from visible and thermal infrared images

人工智能 情态动词 计算机科学 卷积神经网络 模式识别(心理学) 成对比较 稳健性(进化) 计算机视觉 高光谱成像 公制(单位) 工程类 材料科学 高分子化学 生物化学 化学 运营管理 基因
作者
Chenchen Jiang,Huazhong Ren,Hong Yang,Hongtao Huo,Pengfei Zhu,Zhaoyuan Yao,Jing Li,Min Sun,Shihao Yang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:130: 103918-103918 被引量:4
标识
DOI:10.1016/j.jag.2024.103918
摘要

Fusing multi-modal information from visible (VIS) and thermal infrared (TIR) images is crucial for object detection in fully adapting to varied lighting conditions. However, the existing models usually treat VIS and TIR images as independent information and extract corresponding features from separate networks due to the scarcity of training data with labeled instances from both VIS and TIR registration images. To fill this gap, a novel Multi-Modal Fusion NETwork (M2FNet) based on the Transformer architecture is proposed in this paper, which contains two effective modules: the Union-Modal Attention (UMA) and the Cross-Modal Attention (CMA). The UMA module aggregates multi-spectral features from VIS and TIR images and then extracts multi-modal features via a convolutional neural network (CNN) backbone. The CMA module is designed to learn cross-attention features from VIS and TIR pairwise features by Transformer architecture. Evaluation results by the mean average precision (mAP) metric show that the M2FNet method significantly advances the baseline methods trained using only VIS or TIR images by 10.71 % and 2.97 %, respectively. The increments in mAP are observed in the M2FNet method compared with the existing multi-modal methods on two public datasets. Sensitivity analysis of eight illumination thresholds shows that the M2FNet method presents robustness performance on varied illumination conditions and achieves the maximum increase in accuracy of 25.6 %. Moreover, this method is subsequently applied to a new testing dataset, VI2DA (Visible-Infrared paired Video and Image DAtaset), observed by diverse sensors and platforms for testing the generalization ability of object detectors, which will be publicly available at https://github.com/TIR-OD/Datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fk完成签到,获得积分10
1秒前
1秒前
leo发布了新的文献求助10
2秒前
Lin关注了科研通微信公众号
2秒前
2秒前
3秒前
wangchao1880发布了新的文献求助10
4秒前
Ava应助junyang采纳,获得10
4秒前
5秒前
5秒前
龙俊利发布了新的文献求助10
6秒前
7秒前
理综完成签到,获得积分10
8秒前
9秒前
完美世界应助Stanley采纳,获得10
9秒前
9秒前
顺利的梦菲完成签到 ,获得积分10
10秒前
bc完成签到,获得积分10
10秒前
清爽柠檬应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得50
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
佳佳应助科研通管家采纳,获得10
12秒前
悄悄发布了新的文献求助10
12秒前
李爱国应助科研通管家采纳,获得30
12秒前
12秒前
12秒前
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
junyang发布了新的文献求助10
14秒前
14秒前
所所应助Danaus采纳,获得10
14秒前
Lin发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
Cookie完成签到,获得积分20
19秒前
岁月静好完成签到,获得积分20
20秒前
情怀应助Norzing采纳,获得10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371