M2FNet: Multi-modal fusion network for object detection from visible and thermal infrared images

人工智能 情态动词 计算机科学 卷积神经网络 模式识别(心理学) 成对比较 稳健性(进化) 计算机视觉 高光谱成像 公制(单位) 工程类 材料科学 高分子化学 生物化学 化学 运营管理 基因
作者
Chenchen Jiang,Huazhong Ren,Hong Yang,Hongtao Huo,Pengfei Zhu,Zhaoyuan Yao,Jing Li,Min Sun,Shihao Yang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:130: 103918-103918 被引量:1
标识
DOI:10.1016/j.jag.2024.103918
摘要

Fusing multi-modal information from visible (VIS) and thermal infrared (TIR) images is crucial for object detection in fully adapting to varied lighting conditions. However, the existing models usually treat VIS and TIR images as independent information and extract corresponding features from separate networks due to the scarcity of training data with labeled instances from both VIS and TIR registration images. To fill this gap, a novel Multi-Modal Fusion NETwork (M2FNet) based on the Transformer architecture is proposed in this paper, which contains two effective modules: the Union-Modal Attention (UMA) and the Cross-Modal Attention (CMA). The UMA module aggregates multi-spectral features from VIS and TIR images and then extracts multi-modal features via a convolutional neural network (CNN) backbone. The CMA module is designed to learn cross-attention features from VIS and TIR pairwise features by Transformer architecture. Evaluation results by the mean average precision (mAP) metric show that the M2FNet method significantly advances the baseline methods trained using only VIS or TIR images by 10.71 % and 2.97 %, respectively. The increments in mAP are observed in the M2FNet method compared with the existing multi-modal methods on two public datasets. Sensitivity analysis of eight illumination thresholds shows that the M2FNet method presents robustness performance on varied illumination conditions and achieves the maximum increase in accuracy of 25.6 %. Moreover, this method is subsequently applied to a new testing dataset, VI2DA (Visible-Infrared paired Video and Image DAtaset), observed by diverse sensors and platforms for testing the generalization ability of object detectors, which will be publicly available at https://github.com/TIR-OD/Datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WW完成签到,获得积分10
刚刚
2秒前
hyjcnhyj完成签到,获得积分10
3秒前
英姑应助赖道之采纳,获得10
4秒前
6秒前
研友_LXdbaL发布了新的文献求助30
6秒前
思源应助单薄新烟采纳,获得10
7秒前
7秒前
8秒前
Zz完成签到,获得积分10
8秒前
Prandtl完成签到 ,获得积分10
10秒前
11秒前
zfzf0422完成签到 ,获得积分10
12秒前
上官若男应助jackie采纳,获得10
12秒前
12秒前
我是站长才怪应助Benliu采纳,获得20
13秒前
13秒前
zh20130完成签到,获得积分10
13秒前
13秒前
TT发布了新的文献求助10
14秒前
Star1983发布了新的文献求助10
14秒前
研友_LXdbaL完成签到,获得积分10
15秒前
16秒前
在水一方应助66采纳,获得10
17秒前
17秒前
17秒前
缘一发布了新的文献求助10
18秒前
junzilan发布了新的文献求助10
19秒前
CipherSage应助赖道之采纳,获得10
20秒前
ccc完成签到,获得积分10
20秒前
20秒前
20秒前
23秒前
Pauline完成签到,获得积分10
25秒前
jackie发布了新的文献求助10
25秒前
笨笨摇伽发布了新的文献求助10
27秒前
科目三应助皓月繁星采纳,获得10
27秒前
tomato完成签到,获得积分20
29秒前
CodeCraft应助缘一采纳,获得10
30秒前
小二郎应助刘铭晨采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808