Adaptive label secondary reconstruction for missing multi-label learning

计算机科学 多标签分类 人工智能 机器学习
作者
Zhi Qin,Hongmei Chen,Tengyu Yin,Zhong Yuan,Chuan Luo,Shi‐Jinn Horng,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 112019-112019
标识
DOI:10.1016/j.knosys.2024.112019
摘要

In multi-label learning, an instance is often associated with multiple labels, posing a challenge in obtaining the complete set of labels. This difficulty arises from the interference of missing information, which existing methods struggle to overcome by reconstructing the original labels only once. Therefore, an adaptive label secondary reconstruction for missing multi-label learning called ALSRML is proposed. First, based on reliable label learning, the observable label information is projected into a soft label matrix. Second, ALSRML reconstructs each soft label with the help of a self-expression model. The two levels of reconstructed labels are able to promote each other, resulting in better recovery of missing labels. Then, k-nearest-neighbor instance correlation is used to guide the soft label matrix in obtaining a reliable structure. Finally, ALSRML utilizes local label correlation and ℓ2,1−2-norm to constrain the feature coefficient matrix to be stable and sparse. ALSRML demonstrates its superiority over seven state-of-the-art comparison algorithms across most missing rates through comparison experiments and statistical tests on fifteen datasets. Notably, it achieves significant performance improvements of about 43%, 50%, 85%, and 20% in the metrics of Ranking loss, One-error, Average precision, and AUC at 90% missing rate. Ablation experiments further validate the effectiveness of label secondary reconstruction in recovering missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
MeiyanZou完成签到 ,获得积分10
刚刚
3秒前
3秒前
潇湘雪月发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
感动黄豆发布了新的文献求助10
5秒前
hhhblabla应助东方红采纳,获得10
7秒前
Poker应助sb采纳,获得10
8秒前
Ginger发布了新的文献求助10
8秒前
吃骨头的猫完成签到,获得积分10
8秒前
小李完成签到,获得积分10
8秒前
8秒前
9秒前
明芬发布了新的文献求助30
11秒前
11秒前
Smile完成签到,获得积分10
11秒前
Chaoe完成签到,获得积分10
14秒前
建国发布了新的文献求助10
15秒前
闪闪w发布了新的文献求助10
18秒前
淡烟流水完成签到,获得积分10
18秒前
俏皮芷蕊完成签到,获得积分10
19秒前
完美世界应助忐忑的阑香采纳,获得10
19秒前
华仔应助兴奋千兰采纳,获得10
24秒前
Ginger完成签到,获得积分10
25秒前
潇湘雪月发布了新的文献求助10
28秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
30秒前
佳琳有乐完成签到,获得积分10
30秒前
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
大模型应助科研通管家采纳,获得10
30秒前
CHAosLoopy应助科研通管家采纳,获得10
31秒前
桐桐应助科研通管家采纳,获得10
31秒前
今后应助cccyq采纳,获得10
31秒前
烟花应助科研通管家采纳,获得30
31秒前
情怀应助科研通管家采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105