亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive label secondary reconstruction for missing multi-label learning

计算机科学 多标签分类 人工智能 机器学习
作者
Zhi Qin,Hongmei Chen,Tengyu Yin,Zhong Yuan,Chuan Luo,Shi‐Jinn Horng,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112019-112019
标识
DOI:10.1016/j.knosys.2024.112019
摘要

In multi-label learning, an instance is often associated with multiple labels, posing a challenge in obtaining the complete set of labels. This difficulty arises from the interference of missing information, which existing methods struggle to overcome by reconstructing the original labels only once. Therefore, an adaptive label secondary reconstruction for missing multi-label learning called ALSRML is proposed. First, based on reliable label learning, the observable label information is projected into a soft label matrix. Second, ALSRML reconstructs each soft label with the help of a self-expression model. The two levels of reconstructed labels are able to promote each other, resulting in better recovery of missing labels. Then, k-nearest-neighbor instance correlation is used to guide the soft label matrix in obtaining a reliable structure. Finally, ALSRML utilizes local label correlation and ℓ2,1−2-norm to constrain the feature coefficient matrix to be stable and sparse. ALSRML demonstrates its superiority over seven state-of-the-art comparison algorithms across most missing rates through comparison experiments and statistical tests on fifteen datasets. Notably, it achieves significant performance improvements of about 43%, 50%, 85%, and 20% in the metrics of Ranking loss, One-error, Average precision, and AUC at 90% missing rate. Ablation experiments further validate the effectiveness of label secondary reconstruction in recovering missing labels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sd发布了新的文献求助10
1秒前
2秒前
小波完成签到 ,获得积分10
9秒前
15秒前
sd完成签到,获得积分20
15秒前
27秒前
leemiii完成签到 ,获得积分10
28秒前
31秒前
33秒前
Lucas应助Xuan采纳,获得10
35秒前
40秒前
40秒前
后陡门爱神完成签到 ,获得积分10
41秒前
leyellows完成签到 ,获得积分10
42秒前
43秒前
43秒前
暮雨初晴完成签到 ,获得积分10
43秒前
优美紫槐发布了新的文献求助10
44秒前
xin完成签到 ,获得积分10
46秒前
47秒前
Orange应助sd采纳,获得10
48秒前
56秒前
李大刚完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
李健应助优美紫槐采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
五原日落发布了新的文献求助10
1分钟前
Criminology34举报奋斗语柳求助涉嫌违规
1分钟前
1分钟前
1分钟前
优美紫槐发布了新的文献求助10
1分钟前
Criminology34举报高兴电脑求助涉嫌违规
1分钟前
dida完成签到,获得积分10
1分钟前
CipherSage应助lemon采纳,获得10
1分钟前
陶醉的烤鸡完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595661
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14818037
捐赠科研通 4651473
什么是DOI,文献DOI怎么找? 2535551
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754