Adaptive label secondary reconstruction for missing multi-label learning

计算机科学 多标签分类 人工智能 机器学习
作者
Zhi Qin,Hongmei Chen,Tengyu Yin,Zhong Yuan,Chuan Luo,Shi‐Jinn Horng,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112019-112019
标识
DOI:10.1016/j.knosys.2024.112019
摘要

In multi-label learning, an instance is often associated with multiple labels, posing a challenge in obtaining the complete set of labels. This difficulty arises from the interference of missing information, which existing methods struggle to overcome by reconstructing the original labels only once. Therefore, an adaptive label secondary reconstruction for missing multi-label learning called ALSRML is proposed. First, based on reliable label learning, the observable label information is projected into a soft label matrix. Second, ALSRML reconstructs each soft label with the help of a self-expression model. The two levels of reconstructed labels are able to promote each other, resulting in better recovery of missing labels. Then, k-nearest-neighbor instance correlation is used to guide the soft label matrix in obtaining a reliable structure. Finally, ALSRML utilizes local label correlation and ℓ2,1−2-norm to constrain the feature coefficient matrix to be stable and sparse. ALSRML demonstrates its superiority over seven state-of-the-art comparison algorithms across most missing rates through comparison experiments and statistical tests on fifteen datasets. Notably, it achieves significant performance improvements of about 43%, 50%, 85%, and 20% in the metrics of Ranking loss, One-error, Average precision, and AUC at 90% missing rate. Ablation experiments further validate the effectiveness of label secondary reconstruction in recovering missing labels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庚123完成签到,获得积分10
刚刚
xu完成签到 ,获得积分10
刚刚
刚刚
科研通AI2S应助忧虑的安青采纳,获得20
1秒前
1秒前
輕瘋发布了新的文献求助10
2秒前
NexusExplorer应助Water采纳,获得30
2秒前
2秒前
2秒前
3秒前
3秒前
科研通AI6应助www采纳,获得10
3秒前
优雅的砖头完成签到,获得积分10
3秒前
ben完成签到,获得积分10
3秒前
liuz53完成签到,获得积分10
4秒前
小二郎应助和科比采纳,获得10
4秒前
AN发布了新的文献求助30
5秒前
ding应助晚塬采纳,获得10
5秒前
CMUSK发布了新的文献求助10
5秒前
wonder完成签到 ,获得积分20
5秒前
佟鹭其发布了新的文献求助10
6秒前
刘雄伟发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
will发布了新的文献求助10
8秒前
lzy应助跳跃的寄瑶采纳,获得10
8秒前
阿财关注了科研通微信公众号
8秒前
Jasper应助PengchengMa采纳,获得10
9秒前
9秒前
xunmacaoyan完成签到,获得积分10
10秒前
cjl完成签到 ,获得积分10
10秒前
丘比特应助多多采纳,获得10
10秒前
10秒前
11秒前
666发布了新的文献求助10
11秒前
东晓完成签到,获得积分10
11秒前
研友_nqreGZ发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407