Adaptive label secondary reconstruction for missing multi-label learning

计算机科学 多标签分类 人工智能 机器学习
作者
Zhi Qin,Hongmei Chen,Tengyu Yin,Zhong Yuan,Chuan Luo,Shi‐Jinn Horng,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 112019-112019
标识
DOI:10.1016/j.knosys.2024.112019
摘要

In multi-label learning, an instance is often associated with multiple labels, posing a challenge in obtaining the complete set of labels. This difficulty arises from the interference of missing information, which existing methods struggle to overcome by reconstructing the original labels only once. Therefore, an adaptive label secondary reconstruction for missing multi-label learning called ALSRML is proposed. First, based on reliable label learning, the observable label information is projected into a soft label matrix. Second, ALSRML reconstructs each soft label with the help of a self-expression model. The two levels of reconstructed labels are able to promote each other, resulting in better recovery of missing labels. Then, k-nearest-neighbor instance correlation is used to guide the soft label matrix in obtaining a reliable structure. Finally, ALSRML utilizes local label correlation and ℓ2,1−2-norm to constrain the feature coefficient matrix to be stable and sparse. ALSRML demonstrates its superiority over seven state-of-the-art comparison algorithms across most missing rates through comparison experiments and statistical tests on fifteen datasets. Notably, it achieves significant performance improvements of about 43%, 50%, 85%, and 20% in the metrics of Ranking loss, One-error, Average precision, and AUC at 90% missing rate. Ablation experiments further validate the effectiveness of label secondary reconstruction in recovering missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
美好幻灵发布了新的文献求助10
1秒前
1秒前
2秒前
遇晴发布了新的文献求助10
2秒前
2秒前
edtaa完成签到 ,获得积分10
3秒前
yoyo5678发布了新的文献求助10
4秒前
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
大魔王完成签到 ,获得积分10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
1213应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
美好幻灵完成签到,获得积分10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
sumu应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
上官若男应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
毛阳发布了新的文献求助10
8秒前
敏宝发布了新的文献求助10
8秒前
Arthur发布了新的文献求助10
10秒前
大魔王关注了科研通微信公众号
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991284
求助须知:如何正确求助?哪些是违规求助? 3532599
关于积分的说明 11257922
捐赠科研通 3271598
什么是DOI,文献DOI怎么找? 1805465
邀请新用户注册赠送积分活动 882431
科研通“疑难数据库(出版商)”最低求助积分说明 809314