Adaptive label secondary reconstruction for missing multi-label learning

计算机科学 多标签分类 人工智能 机器学习
作者
Zhi Qin,Hongmei Chen,Tengyu Yin,Zhong Yuan,Chuan Luo,Shi‐Jinn Horng,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 112019-112019
标识
DOI:10.1016/j.knosys.2024.112019
摘要

In multi-label learning, an instance is often associated with multiple labels, posing a challenge in obtaining the complete set of labels. This difficulty arises from the interference of missing information, which existing methods struggle to overcome by reconstructing the original labels only once. Therefore, an adaptive label secondary reconstruction for missing multi-label learning called ALSRML is proposed. First, based on reliable label learning, the observable label information is projected into a soft label matrix. Second, ALSRML reconstructs each soft label with the help of a self-expression model. The two levels of reconstructed labels are able to promote each other, resulting in better recovery of missing labels. Then, k-nearest-neighbor instance correlation is used to guide the soft label matrix in obtaining a reliable structure. Finally, ALSRML utilizes local label correlation and ℓ2,1−2-norm to constrain the feature coefficient matrix to be stable and sparse. ALSRML demonstrates its superiority over seven state-of-the-art comparison algorithms across most missing rates through comparison experiments and statistical tests on fifteen datasets. Notably, it achieves significant performance improvements of about 43%, 50%, 85%, and 20% in the metrics of Ranking loss, One-error, Average precision, and AUC at 90% missing rate. Ablation experiments further validate the effectiveness of label secondary reconstruction in recovering missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nothing发布了新的文献求助10
1秒前
cute666发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
纸质超人发布了新的文献求助10
2秒前
3秒前
3秒前
Lucas应助ln采纳,获得10
4秒前
ZSY完成签到,获得积分10
4秒前
huihui发布了新的文献求助10
4秒前
lin完成签到,获得积分10
4秒前
Hello应助小卢睡的香采纳,获得10
6秒前
情怀应助金荣采纳,获得20
7秒前
万信心发布了新的文献求助10
7秒前
7秒前
星辰大海应助zifeimo采纳,获得10
7秒前
Jasper应助杨一采纳,获得10
9秒前
cl完成签到 ,获得积分10
9秒前
阳光襄发布了新的文献求助10
9秒前
cute666完成签到,获得积分10
9秒前
10秒前
lin发布了新的文献求助10
10秒前
星星虫完成签到,获得积分10
10秒前
思源应助李家龙采纳,获得10
10秒前
11秒前
12秒前
12秒前
12秒前
FKVB_完成签到,获得积分10
12秒前
12秒前
绿灯请通行完成签到,获得积分10
13秒前
WT发布了新的文献求助10
13秒前
黑摄会阿Fay完成签到,获得积分10
13秒前
13秒前
沉默羔羊完成签到,获得积分10
13秒前
桐桐应助卜钊采纳,获得10
14秒前
小卢睡的香完成签到,获得积分10
14秒前
斯文败类应助hongdongxiang采纳,获得10
15秒前
FashionBoy应助静心404采纳,获得10
15秒前
万邦德完成签到,获得积分10
16秒前
16秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646