Adaptive label secondary reconstruction for missing multi-label learning

计算机科学 多标签分类 人工智能 机器学习
作者
Zhi Qin,Hongmei Chen,Tengyu Yin,Zhong Yuan,Chuan Luo,Shi‐Jinn Horng,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112019-112019
标识
DOI:10.1016/j.knosys.2024.112019
摘要

In multi-label learning, an instance is often associated with multiple labels, posing a challenge in obtaining the complete set of labels. This difficulty arises from the interference of missing information, which existing methods struggle to overcome by reconstructing the original labels only once. Therefore, an adaptive label secondary reconstruction for missing multi-label learning called ALSRML is proposed. First, based on reliable label learning, the observable label information is projected into a soft label matrix. Second, ALSRML reconstructs each soft label with the help of a self-expression model. The two levels of reconstructed labels are able to promote each other, resulting in better recovery of missing labels. Then, k-nearest-neighbor instance correlation is used to guide the soft label matrix in obtaining a reliable structure. Finally, ALSRML utilizes local label correlation and ℓ2,1−2-norm to constrain the feature coefficient matrix to be stable and sparse. ALSRML demonstrates its superiority over seven state-of-the-art comparison algorithms across most missing rates through comparison experiments and statistical tests on fifteen datasets. Notably, it achieves significant performance improvements of about 43%, 50%, 85%, and 20% in the metrics of Ranking loss, One-error, Average precision, and AUC at 90% missing rate. Ablation experiments further validate the effectiveness of label secondary reconstruction in recovering missing labels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
酷波er应助紧张的惜梦采纳,获得10
2秒前
波谷发布了新的文献求助10
2秒前
2秒前
Dr_JennyZ完成签到,获得积分10
2秒前
笔至梦花完成签到 ,获得积分10
3秒前
周小鱼完成签到,获得积分10
3秒前
3秒前
许起眸发布了新的文献求助10
3秒前
3秒前
进击的PhD应助地震学牛马采纳,获得30
3秒前
生动初蓝发布了新的文献求助10
4秒前
yijiubingshi发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
怕黑捕发布了新的文献求助10
7秒前
lq1024424发布了新的文献求助10
8秒前
粱夏烟发布了新的文献求助10
8秒前
星业辰完成签到,获得积分10
9秒前
FashionBoy应助photodetectors采纳,获得10
11秒前
阳yang发布了新的文献求助10
12秒前
12秒前
zzmAZUSA完成签到,获得积分20
12秒前
13秒前
小半发布了新的文献求助20
14秒前
14秒前
思源应助瓦西里采纳,获得10
16秒前
谦让靖儿发布了新的文献求助10
16秒前
搞怪灯泡完成签到,获得积分10
17秒前
玉米莲藕排骨汤完成签到,获得积分10
17秒前
和谐安露完成签到,获得积分20
17秒前
youjun发布了新的文献求助30
18秒前
怕黑捕完成签到,获得积分10
18秒前
19秒前
雍雍完成签到 ,获得积分10
19秒前
科研通AI6应助上山的吗喽采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901