The accuracy losing phenomenon in abrasive tool condition monitoring and a noval WMMC-JDA based data-driven method considered tool stochastic surface morphology

计算机科学 磨料 边距(机器学习) 特征(语言学) 分割 人工智能 模式识别(心理学) 相似性(几何) 研磨 领域(数学分析) 机器学习 数学 机械工程 工程类 数学分析 哲学 图像(数学) 语言学
作者
Mingjun Liu,Yadong Gong,Jingyu Sun,Benjia Tang,Yangyang Sun,Xinpeng Zu,Jun Zhao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110410-110410 被引量:2
标识
DOI:10.1016/j.ymssp.2023.110410
摘要

As a critically issue in the maintaining of desired part quality and manufacturing productivity, tool condition monitoring (TCM) problem is treated by multi data-driven machine learning methods with training and testing datasets generated by stochastic segmentation. For existing methods, it is assumed that samples collected from same type tools follow identical probability distribution. Different from regular tools, abrasive tools dissatisfy this assumption because of their stochastic surface morphologies. Therefore, traditional data-driven methods loss their accuracies in abrasive tool changing cases. In data driven TCM models, the macroscopic effect of abrasive tool micro-stochasticity is discovered. For the abrasive tool frequently changing cases, an abrasive tool condition monitoring (ATCM) method based on unsupervised domain adaptation is presented to deal with changes caused by stochastic surface morphology. In feature-based transfer learning, source and target domain datasets are projected into a transferred subspace to enhance the distribution alignment similarity of two domains. A weighted maximum margin criterion (WMMC) is adopted in the domain adaptation process to make the transformed samples in same class closing but segregated from those in different classes. With unsupervised domain adaptation mechanism and multilayer perceptron (MLP), the unsupervised domain adaptation is proposed to deal with traditional model invalidation after abrasive tool changes. The proposed method is verified by the robotic belt grinding experiment results. Compared with the existing data-driven method, the weighted maximum margin criterion joint distribution adaptation (WMMC-JDA) based ATCM method still maintains the predicting effectiveness after abrasive tool changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Migue应助科研通管家采纳,获得10
6秒前
合适靖儿完成签到 ,获得积分10
9秒前
12秒前
吕圆圆圆啊完成签到,获得积分10
16秒前
踏实的无敌完成签到,获得积分10
22秒前
风起枫落完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
27秒前
Meteor636完成签到 ,获得积分10
31秒前
fjhsg25发布了新的文献求助10
32秒前
32秒前
34秒前
34秒前
37秒前
zenabia完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
42秒前
沉静觅风完成签到,获得积分10
52秒前
我来也完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
57秒前
玖月完成签到 ,获得积分10
57秒前
ng完成签到 ,获得积分10
59秒前
1分钟前
ZHANG完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分10
1分钟前
可靠映秋完成签到,获得积分10
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
深情安青应助莫大采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
John完成签到 ,获得积分10
1分钟前
冷冷完成签到 ,获得积分10
1分钟前
ioio完成签到 ,获得积分10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
Drlee完成签到 ,获得积分10
1分钟前
埃森完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
李伟完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482634
求助须知:如何正确求助?哪些是违规求助? 4583368
关于积分的说明 14389218
捐赠科研通 4512540
什么是DOI,文献DOI怎么找? 2473057
邀请新用户注册赠送积分活动 1459201
关于科研通互助平台的介绍 1432781