The accuracy losing phenomenon in abrasive tool condition monitoring and a noval WMMC-JDA based data-driven method considered tool stochastic surface morphology

计算机科学 磨料 边距(机器学习) 特征(语言学) 分割 人工智能 模式识别(心理学) 相似性(几何) 研磨 领域(数学分析) 机器学习 数学 机械工程 工程类 数学分析 哲学 图像(数学) 语言学
作者
Mingjun Liu,Yadong Gong,Jingyu Sun,Benjia Tang,Yangyang Sun,Xinpeng Zu,Jun Zhao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:198: 110410-110410 被引量:2
标识
DOI:10.1016/j.ymssp.2023.110410
摘要

As a critically issue in the maintaining of desired part quality and manufacturing productivity, tool condition monitoring (TCM) problem is treated by multi data-driven machine learning methods with training and testing datasets generated by stochastic segmentation. For existing methods, it is assumed that samples collected from same type tools follow identical probability distribution. Different from regular tools, abrasive tools dissatisfy this assumption because of their stochastic surface morphologies. Therefore, traditional data-driven methods loss their accuracies in abrasive tool changing cases. In data driven TCM models, the macroscopic effect of abrasive tool micro-stochasticity is discovered. For the abrasive tool frequently changing cases, an abrasive tool condition monitoring (ATCM) method based on unsupervised domain adaptation is presented to deal with changes caused by stochastic surface morphology. In feature-based transfer learning, source and target domain datasets are projected into a transferred subspace to enhance the distribution alignment similarity of two domains. A weighted maximum margin criterion (WMMC) is adopted in the domain adaptation process to make the transformed samples in same class closing but segregated from those in different classes. With unsupervised domain adaptation mechanism and multilayer perceptron (MLP), the unsupervised domain adaptation is proposed to deal with traditional model invalidation after abrasive tool changes. The proposed method is verified by the robotic belt grinding experiment results. Compared with the existing data-driven method, the weighted maximum margin criterion joint distribution adaptation (WMMC-JDA) based ATCM method still maintains the predicting effectiveness after abrasive tool changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
广州南完成签到 ,获得积分10
2秒前
2秒前
1111jfdasfkdanf完成签到 ,获得积分10
2秒前
今后应助Chelry采纳,获得10
2秒前
唐唐完成签到,获得积分10
3秒前
yiyi发布了新的文献求助10
6秒前
6秒前
8秒前
乐乐应助淡然丹秋采纳,获得10
8秒前
青春完成签到 ,获得积分10
10秒前
企鹅惜雪完成签到,获得积分20
10秒前
yiyi完成签到,获得积分10
13秒前
13秒前
陶醉怜容完成签到,获得积分10
13秒前
超帅的灭龙完成签到,获得积分10
14秒前
15秒前
企鹅惜雪发布了新的文献求助30
16秒前
善学以致用应助zym999999采纳,获得10
18秒前
逃亡的小狗完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
23秒前
淡然丹秋发布了新的文献求助10
24秒前
25秒前
SciGPT应助张成协采纳,获得10
26秒前
26秒前
liyang999完成签到 ,获得积分10
27秒前
28秒前
Ava应助简单的发夹采纳,获得10
29秒前
29秒前
充电宝应助细心的凡桃采纳,获得10
29秒前
30秒前
31秒前
研友_LBaRl8完成签到,获得积分10
31秒前
半夏完成签到,获得积分10
31秒前
酷酷朋友发布了新的文献求助10
32秒前
大胆的忆安完成签到 ,获得积分10
33秒前
所所应助wwmmyy采纳,获得10
35秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511