The accuracy losing phenomenon in abrasive tool condition monitoring and a noval WMMC-JDA based data-driven method considered tool stochastic surface morphology

计算机科学 磨料 边距(机器学习) 特征(语言学) 分割 人工智能 模式识别(心理学) 相似性(几何) 研磨 领域(数学分析) 机器学习 数学 机械工程 工程类 数学分析 哲学 图像(数学) 语言学
作者
Mingjun Liu,Yadong Gong,Jingyu Sun,Benjia Tang,Yangyang Sun,Xinpeng Zu,Jun Zhao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110410-110410 被引量:2
标识
DOI:10.1016/j.ymssp.2023.110410
摘要

As a critically issue in the maintaining of desired part quality and manufacturing productivity, tool condition monitoring (TCM) problem is treated by multi data-driven machine learning methods with training and testing datasets generated by stochastic segmentation. For existing methods, it is assumed that samples collected from same type tools follow identical probability distribution. Different from regular tools, abrasive tools dissatisfy this assumption because of their stochastic surface morphologies. Therefore, traditional data-driven methods loss their accuracies in abrasive tool changing cases. In data driven TCM models, the macroscopic effect of abrasive tool micro-stochasticity is discovered. For the abrasive tool frequently changing cases, an abrasive tool condition monitoring (ATCM) method based on unsupervised domain adaptation is presented to deal with changes caused by stochastic surface morphology. In feature-based transfer learning, source and target domain datasets are projected into a transferred subspace to enhance the distribution alignment similarity of two domains. A weighted maximum margin criterion (WMMC) is adopted in the domain adaptation process to make the transformed samples in same class closing but segregated from those in different classes. With unsupervised domain adaptation mechanism and multilayer perceptron (MLP), the unsupervised domain adaptation is proposed to deal with traditional model invalidation after abrasive tool changes. The proposed method is verified by the robotic belt grinding experiment results. Compared with the existing data-driven method, the weighted maximum margin criterion joint distribution adaptation (WMMC-JDA) based ATCM method still maintains the predicting effectiveness after abrasive tool changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
deng完成签到 ,获得积分10
2秒前
lalalala完成签到,获得积分10
2秒前
mature0821完成签到,获得积分10
3秒前
Yuxin发布了新的文献求助10
7秒前
日暮炊烟完成签到 ,获得积分0
9秒前
9秒前
9秒前
MFNM完成签到,获得积分10
9秒前
时秋发布了新的文献求助10
11秒前
徐婷完成签到,获得积分10
12秒前
共享精神应助Yuxin采纳,获得10
13秒前
小二郎应助Hh采纳,获得10
14秒前
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Migue应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得30
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
小菜鸟发布了新的文献求助50
17秒前
白桃乌龙完成签到,获得积分10
17秒前
iNk应助湘君采纳,获得10
18秒前
欢喜雯发布了新的文献求助10
19秒前
彭于晏应助俗人采纳,获得10
19秒前
爆米花应助Eris采纳,获得10
19秒前
19秒前
24秒前
年三月完成签到 ,获得积分10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162844
求助须知:如何正确求助?哪些是违规求助? 2813816
关于积分的说明 7902135
捐赠科研通 2473442
什么是DOI,文献DOI怎么找? 1316849
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187