The accuracy losing phenomenon in abrasive tool condition monitoring and a noval WMMC-JDA based data-driven method considered tool stochastic surface morphology

计算机科学 磨料 边距(机器学习) 特征(语言学) 分割 人工智能 模式识别(心理学) 相似性(几何) 研磨 领域(数学分析) 机器学习 数学 机械工程 工程类 数学分析 哲学 图像(数学) 语言学
作者
Mingjun Liu,Yadong Gong,Jingyu Sun,Benjia Tang,Yangyang Sun,Xinpeng Zu,Jun Zhao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:198: 110410-110410 被引量:2
标识
DOI:10.1016/j.ymssp.2023.110410
摘要

As a critically issue in the maintaining of desired part quality and manufacturing productivity, tool condition monitoring (TCM) problem is treated by multi data-driven machine learning methods with training and testing datasets generated by stochastic segmentation. For existing methods, it is assumed that samples collected from same type tools follow identical probability distribution. Different from regular tools, abrasive tools dissatisfy this assumption because of their stochastic surface morphologies. Therefore, traditional data-driven methods loss their accuracies in abrasive tool changing cases. In data driven TCM models, the macroscopic effect of abrasive tool micro-stochasticity is discovered. For the abrasive tool frequently changing cases, an abrasive tool condition monitoring (ATCM) method based on unsupervised domain adaptation is presented to deal with changes caused by stochastic surface morphology. In feature-based transfer learning, source and target domain datasets are projected into a transferred subspace to enhance the distribution alignment similarity of two domains. A weighted maximum margin criterion (WMMC) is adopted in the domain adaptation process to make the transformed samples in same class closing but segregated from those in different classes. With unsupervised domain adaptation mechanism and multilayer perceptron (MLP), the unsupervised domain adaptation is proposed to deal with traditional model invalidation after abrasive tool changes. The proposed method is verified by the robotic belt grinding experiment results. Compared with the existing data-driven method, the weighted maximum margin criterion joint distribution adaptation (WMMC-JDA) based ATCM method still maintains the predicting effectiveness after abrasive tool changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hilda007应助猪猪hero采纳,获得10
2秒前
4秒前
文静元霜完成签到,获得积分10
6秒前
6秒前
幸福中心完成签到,获得积分10
8秒前
默默雨竹发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
华仔应助sfliufighting采纳,获得10
9秒前
情怀应助ubiqutin采纳,获得10
9秒前
9秒前
幽默沛山完成签到 ,获得积分10
10秒前
万能图书馆应助白云垛采纳,获得10
11秒前
南风发布了新的文献求助10
11秒前
深情安青应助质者若渝采纳,获得30
11秒前
xyx完成签到,获得积分10
12秒前
12秒前
13秒前
默默雨竹完成签到,获得积分20
14秒前
15秒前
李健应助楚江南采纳,获得10
16秒前
打打应助骑在电扇上采纳,获得10
17秒前
认真的跳跳糖应助猪猪hero采纳,获得10
17秒前
Hello应助楚珊珊采纳,获得10
17秒前
17秒前
18秒前
19秒前
19秒前
香蕉觅云应助达奚东权采纳,获得10
20秒前
20秒前
QXS完成签到 ,获得积分10
20秒前
聪慧百招发布了新的文献求助10
21秒前
ubiqutin发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
23秒前
day发布了新的文献求助10
23秒前
咩咩羊发布了新的文献求助10
24秒前
24秒前
烦人精完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069273
求助须知:如何正确求助?哪些是违规求助? 4290651
关于积分的说明 13368489
捐赠科研通 4110788
什么是DOI,文献DOI怎么找? 2251058
邀请新用户注册赠送积分活动 1256292
关于科研通互助平台的介绍 1188805