The accuracy losing phenomenon in abrasive tool condition monitoring and a noval WMMC-JDA based data-driven method considered tool stochastic surface morphology

计算机科学 磨料 边距(机器学习) 特征(语言学) 分割 人工智能 模式识别(心理学) 相似性(几何) 研磨 领域(数学分析) 机器学习 数学 机械工程 工程类 数学分析 哲学 图像(数学) 语言学
作者
Mingjun Liu,Yadong Gong,Jingyu Sun,Benjia Tang,Yangyang Sun,Xinpeng Zu,Jun Zhao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110410-110410 被引量:2
标识
DOI:10.1016/j.ymssp.2023.110410
摘要

As a critically issue in the maintaining of desired part quality and manufacturing productivity, tool condition monitoring (TCM) problem is treated by multi data-driven machine learning methods with training and testing datasets generated by stochastic segmentation. For existing methods, it is assumed that samples collected from same type tools follow identical probability distribution. Different from regular tools, abrasive tools dissatisfy this assumption because of their stochastic surface morphologies. Therefore, traditional data-driven methods loss their accuracies in abrasive tool changing cases. In data driven TCM models, the macroscopic effect of abrasive tool micro-stochasticity is discovered. For the abrasive tool frequently changing cases, an abrasive tool condition monitoring (ATCM) method based on unsupervised domain adaptation is presented to deal with changes caused by stochastic surface morphology. In feature-based transfer learning, source and target domain datasets are projected into a transferred subspace to enhance the distribution alignment similarity of two domains. A weighted maximum margin criterion (WMMC) is adopted in the domain adaptation process to make the transformed samples in same class closing but segregated from those in different classes. With unsupervised domain adaptation mechanism and multilayer perceptron (MLP), the unsupervised domain adaptation is proposed to deal with traditional model invalidation after abrasive tool changes. The proposed method is verified by the robotic belt grinding experiment results. Compared with the existing data-driven method, the weighted maximum margin criterion joint distribution adaptation (WMMC-JDA) based ATCM method still maintains the predicting effectiveness after abrasive tool changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助111采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
活力的映易完成签到,获得积分10
1秒前
张楚懿完成签到,获得积分10
1秒前
单薄靖儿发布了新的文献求助10
1秒前
nuanxiner完成签到,获得积分10
2秒前
怡然猎豹完成签到,获得积分0
2秒前
英姑应助JJJ采纳,获得30
3秒前
3秒前
LLLLL完成签到,获得积分10
3秒前
zt完成签到,获得积分10
3秒前
白日焰火完成签到 ,获得积分10
3秒前
LALALALA完成签到 ,获得积分10
4秒前
Spice完成签到 ,获得积分10
4秒前
车厘子完成签到 ,获得积分10
5秒前
脑洞疼应助淡淡的忆彤采纳,获得10
5秒前
5秒前
矮小的安柏完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
zz完成签到 ,获得积分10
9秒前
整齐百褶裙完成签到 ,获得积分10
10秒前
DT完成签到 ,获得积分10
10秒前
无花果应助星空采纳,获得10
10秒前
大雪完成签到 ,获得积分10
10秒前
特大包包完成签到 ,获得积分10
10秒前
liuz53完成签到,获得积分10
11秒前
单薄靖儿完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
w尘发布了新的文献求助10
14秒前
tian完成签到,获得积分10
14秒前
852应助一个小胖子采纳,获得10
15秒前
子非鱼完成签到,获得积分10
15秒前
abb完成签到 ,获得积分10
16秒前
曹毅凯完成签到,获得积分10
16秒前
夏日汽水完成签到 ,获得积分10
16秒前
张一亦可完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131