A comprehensive review on deep learning algorithms: Security and privacy issues

计算机科学 同态加密 计算机安全 逃避(道德) 密码学 对手 散列函数 机器学习 加密 人工智能 算法 免疫系统 免疫学 生物
作者
Muhammad Tayyab,Mohsen Marjani,N. Z. Jhanjhi,Mohamed Hashem,Raja Sher Afgun Usmani,Faizan Qamar
出处
期刊:Computers & Security [Elsevier]
卷期号:131: 103297-103297 被引量:24
标识
DOI:10.1016/j.cose.2023.103297
摘要

Machine Learning (ML) algorithms are used to train the machines to perform various complicated tasks that begin to modify and improve with experiences. It has become widely used for automated decisions. In particular, the applications which have a profound impact on society that rely on Deep Learning (DL) for autonomous decisions, such as Patient Health Record (PHR), Unmanned Aerial Vehicles (UAVs), etc. Such impacts have a vital concern about the potential vulnerabilities introduced by DL. Traditional attackers have powerful motives that can alter and modify DL algorithms to subvert the outcomes. In poisoning attacks, an attacker can consciously change training dataset, which is used to operate the outcomes of decision-based model. While in privacy and evasion attacks, an adversary can also misclassify new datasets to infer private information. Therefore, in this paper, we have provided a review of security and privacy issues of DL algorithms and analyzed their applications and challenges based on state-of-the-art literature. We have classified attacks, devised a taxonomy, and comprehensive analysis of defense techniques for the most common attacks such as poisoning, evasion, model extraction, and model inversion. We have also presented various privacy preserving techniques to ensure the privacy of dataset. We have proposed a secure cryptographic framework for dataset based on hash functions and Homomorphic Encryption (HE) scheme. Finally, we have provided recent research challenges and future studies concerning security and privacy issues. We believed that the highlighted limitations and weaknesses provide possible research questions and open matters for designing efficient future DL algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
1秒前
linuo完成签到,获得积分10
2秒前
陶醉觅夏发布了新的文献求助10
2秒前
3秒前
3秒前
元谷雪应助lucylee采纳,获得10
3秒前
黄少侠完成签到 ,获得积分10
3秒前
6秒前
6秒前
小蘑菇应助黎明在眼前了采纳,获得10
6秒前
malenia完成签到,获得积分10
8秒前
蓝胖子应助陶醉觅夏采纳,获得30
8秒前
我wo发布了新的文献求助10
8秒前
茄子驳回了李健应助
10秒前
跳跃碧灵发布了新的文献求助30
10秒前
11秒前
打打应助奋斗天德采纳,获得10
12秒前
16秒前
17秒前
跳跃碧灵完成签到,获得积分10
18秒前
大个应助xiaooooo采纳,获得10
19秒前
Roxanne发布了新的文献求助30
20秒前
Cymatics完成签到 ,获得积分10
20秒前
23秒前
23秒前
虚拟的尔蓝完成签到 ,获得积分10
24秒前
冯丽雪完成签到,获得积分20
25秒前
深情安青应助俊逸若之采纳,获得10
26秒前
27秒前
27秒前
冯丽雪发布了新的文献求助10
28秒前
精灵夜雨完成签到,获得积分10
28秒前
30秒前
Jasper应助zoe采纳,获得10
30秒前
xxxxxxxx发布了新的文献求助10
31秒前
xiaooooo发布了新的文献求助10
31秒前
白英发布了新的文献求助10
33秒前
sx完成签到 ,获得积分10
35秒前
山粉圆子完成签到 ,获得积分10
36秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023