Development and validation of a radiopathomic model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer patients

医学 乳腺癌 外科肿瘤学 肿瘤科 新辅助治疗 内科学 接收机工作特性 曲线下面积 癌症
作者
Jieqiu Zhang,Qi Wu,Wen Yin,Lei Yang,Bo Xiao,Jianmei Wang,Xiaopeng Yao
出处
期刊:BMC Cancer [BioMed Central]
卷期号:23 (1) 被引量:6
标识
DOI:10.1186/s12885-023-10817-2
摘要

Neoadjuvant chemotherapy (NAC) has become the standard therapeutic option for early high-risk and locally advanced breast cancer. However, response rates to NAC vary between patients, causing delays in treatment and affecting the prognosis for patients who do not sensitive to NAC.In total, 211 breast cancer patients who completed NAC (training set: 155, validation set: 56) were retrospectively enrolled. we developed a deep learning radiopathomics model(DLRPM) by Support Vector Machine (SVM) method based on clinicopathological features, radiomics features, and pathomics features. Furthermore, we comprehensively validated the DLRPM and compared it with three single-scale signatures.DLRPM had favourable performance for the prediction of pathological complete response (pCR) in the training set (AUC 0.933[95% CI 0.895-0.971]), and in the validation set (AUC 0.927 [95% CI 0.858-0.996]). In the validation set, DLRPM also significantly outperformed the radiomics signature (AUC 0.821[0.700-0.942]), pathomics signature (AUC 0.766[0.629-0.903]), and deep learning pathomics signature (AUC 0.804[0.683-0.925]) (all p < 0.05). The calibration curves and decision curve analysis also indicated the clinical effectiveness of the DLRPM.DLRPM can help clinicians accurately predict the efficacy of NAC before treatment, highlighting the potential of artificial intelligence to improve the personalized treatment of breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助shadow采纳,获得10
刚刚
梦红尘发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
rosa完成签到,获得积分10
3秒前
4秒前
元气少女猪刚鬣完成签到,获得积分10
4秒前
4秒前
yang发布了新的文献求助10
5秒前
7秒前
布鲁斯盖完成签到,获得积分10
7秒前
Foch发布了新的文献求助10
8秒前
8秒前
9秒前
善学以致用应助Rason采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
科研通AI2S应助jitianxing采纳,获得10
11秒前
hmlee123完成签到,获得积分10
12秒前
小雪糕发布了新的文献求助10
14秒前
shadow发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
有魅力的雨雪完成签到,获得积分20
18秒前
木木应助zz采纳,获得10
20秒前
领导范儿应助Chris采纳,获得10
22秒前
zhjwu发布了新的文献求助10
22秒前
赵峰完成签到,获得积分10
22秒前
huxuehong完成签到,获得积分10
23秒前
丘比特应助艺术家脾气采纳,获得10
25秒前
李博士发布了新的文献求助10
25秒前
今后应助pumpkin采纳,获得10
26秒前
帅气的宛凝完成签到,获得积分10
27秒前
27秒前
28秒前
Foch发布了新的文献求助80
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998784
求助须知:如何正确求助?哪些是违规求助? 3538262
关于积分的说明 11273791
捐赠科研通 3277260
什么是DOI,文献DOI怎么找? 1807481
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075