DeepDetect: Deep Learning of Peptide Detectability Enhanced by Peptide Digestibility and Its Application to DIA Library Reduction

化学 生物信息学 胰蛋白酶 蛋白质组学 串联质谱法 质谱法 自下而上蛋白质组学 色谱法 计算生物学 生物化学 蛋白质质谱法 生物 基因
作者
Jinghan Yang,Zhiyuan Cheng,Fuzhou Gong,Yan Fu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (15): 6235-6243 被引量:7
标识
DOI:10.1021/acs.analchem.2c03662
摘要

In tandem mass spectrometry-based proteomics, proteins are digested into peptides by specific protease(s), but generally only a fraction of peptides can be detected. To characterize detectable proteotypic peptides, we have developed a series of methods to predict peptide digestibility and detectability. Here, we propose a bidirectional long short-term memory (BiLSTM)-based algorithm, named DeepDetect, for the prediction of peptide detectability enhanced by peptide digestibility. Compared with existing algorithms, DeepDetect is featured by its improved prediction accuracy for a wide range of commonly used proteases, covering trypsin, ArgC, chymotrypsin, GluC, LysC, AspN, LysN, and LysargiNase. On 11 test data sets from E. coli, yeast, mouse, and human samples, DeepDetect achieved higher prediction accuracies than PepFormer, a state-of-the-art deep-learning-based peptide detectability prediction algorithm. The results further demonstrated that peptide digestibility can substantially enhance the performance of peptide detectability predictors. As an application, DeepDetect was used to reduce the in silico predicted spectral libraries in data-independent acquisition mass spectrometry data analysis. Experiments using DIA-NN software showed that DeepDetect can significantly accelerate the library search without loss of peptide and protein identification sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuxianglin2006完成签到,获得积分10
1秒前
3秒前
xixihaha完成签到,获得积分10
5秒前
谷粱瑾瑜完成签到,获得积分10
6秒前
谷粱瑾瑜发布了新的文献求助10
10秒前
安安完成签到,获得积分10
10秒前
星辰大海应助yang采纳,获得10
12秒前
汉堡包应助nenoaowu采纳,获得10
13秒前
白熊完成签到,获得积分10
13秒前
充电宝应助bian采纳,获得10
13秒前
澡雪完成签到,获得积分10
14秒前
14秒前
15秒前
want_top_journal完成签到,获得积分10
15秒前
研友_VZG7GZ应助《子非鱼》采纳,获得10
15秒前
Excalibur发布了新的文献求助30
16秒前
16秒前
黄暹之完成签到,获得积分10
16秒前
上官若男应助刻苦大侠采纳,获得10
16秒前
17秒前
18秒前
ggg发布了新的文献求助10
18秒前
言非离完成签到,获得积分10
18秒前
猩猿鸡发布了新的文献求助10
19秒前
泡芙发布了新的文献求助10
20秒前
20秒前
躺平不摆烂完成签到,获得积分10
21秒前
宋映梦发布了新的文献求助10
22秒前
科目三应助柏铸海采纳,获得10
22秒前
芒go发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
研友_85YJY8完成签到,获得积分10
23秒前
23秒前
24秒前
慕辰发布了新的文献求助10
25秒前
bian完成签到,获得积分20
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498310
关于积分的说明 11091370
捐赠科研通 3228948
什么是DOI,文献DOI怎么找? 1785159
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377