DeepDetect: Deep Learning of Peptide Detectability Enhanced by Peptide Digestibility and Its Application to DIA Library Reduction

化学 生物信息学 胰蛋白酶 蛋白质组学 串联质谱法 质谱法 自下而上蛋白质组学 色谱法 计算生物学 生物化学 蛋白质质谱法 生物 基因
作者
Jinghan Yang,Zhiyuan Cheng,Fuzhou Gong,Yan Fu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (15): 6235-6243 被引量:5
标识
DOI:10.1021/acs.analchem.2c03662
摘要

In tandem mass spectrometry-based proteomics, proteins are digested into peptides by specific protease(s), but generally only a fraction of peptides can be detected. To characterize detectable proteotypic peptides, we have developed a series of methods to predict peptide digestibility and detectability. Here, we propose a bidirectional long short-term memory (BiLSTM)-based algorithm, named DeepDetect, for the prediction of peptide detectability enhanced by peptide digestibility. Compared with existing algorithms, DeepDetect is featured by its improved prediction accuracy for a wide range of commonly used proteases, covering trypsin, ArgC, chymotrypsin, GluC, LysC, AspN, LysN, and LysargiNase. On 11 test data sets from E. coli, yeast, mouse, and human samples, DeepDetect achieved higher prediction accuracies than PepFormer, a state-of-the-art deep-learning-based peptide detectability prediction algorithm. The results further demonstrated that peptide digestibility can substantially enhance the performance of peptide detectability predictors. As an application, DeepDetect was used to reduce the in silico predicted spectral libraries in data-independent acquisition mass spectrometry data analysis. Experiments using DIA-NN software showed that DeepDetect can significantly accelerate the library search without loss of peptide and protein identification sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助睡不醒的xx采纳,获得10
1秒前
纪震宇完成签到,获得积分10
2秒前
NexusExplorer应助活泼新儿采纳,获得10
2秒前
4秒前
5秒前
7秒前
sks关注了科研通微信公众号
8秒前
汉堡包应助光芒万丈采纳,获得10
10秒前
科研发布了新的文献求助100
11秒前
showitt发布了新的文献求助10
12秒前
Z_Z完成签到,获得积分10
13秒前
14秒前
KYTZL发布了新的文献求助10
14秒前
zhanks发布了新的文献求助10
17秒前
爆米花应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
Owen应助中中采纳,获得10
20秒前
20秒前
20秒前
20秒前
21秒前
24秒前
echo完成签到,获得积分10
26秒前
KYTZL完成签到,获得积分10
27秒前
CCC发布了新的文献求助10
28秒前
许峰完成签到,获得积分10
29秒前
29秒前
30秒前
犹豫溪灵完成签到,获得积分10
32秒前
34秒前
中中发布了新的文献求助10
36秒前
空白幻想丶完成签到,获得积分10
36秒前
xzy998应助张朝程采纳,获得10
36秒前
犹豫溪灵发布了新的文献求助10
38秒前
香蕉饼干完成签到,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055401
求助须知:如何正确求助?哪些是违规求助? 2712227
关于积分的说明 7430195
捐赠科研通 2357037
什么是DOI,文献DOI怎么找? 1248528
科研通“疑难数据库(出版商)”最低求助积分说明 606737
版权声明 596093