亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual Transformer Based Prediction for Lane Change Intentions and Trajectories in Mixed Traffic Environment

弹道 对偶(语法数字) 计算机科学 感知 变压器 人工智能 数据挖掘 机器学习 模拟 工程类 生物 电气工程 物理 文学类 艺术 电压 神经科学 天文
作者
Kai Gao,Xunhao Li,Bin Chen,Lin Hu,Jian Liu,Ronghua Du,Yongfu Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 6203-6216 被引量:45
标识
DOI:10.1109/tits.2023.3248842
摘要

In a mixed traffic environment of human and autonomous driving, it is crucial for an autonomous vehicle to predict the lane change intentions and trajectories of vehicles that pose a risk to it. However, due to the uncertainty of human intentions, accurately predicting lane change intentions and trajectories is a great challenge. Therefore, this paper aims to establish the connection between intentions and trajectories and propose a dual Transformer model for the target vehicle. The dual Transformer model contains a lane change intention prediction model and a trajectory prediction model. The lane change intention prediction model is able to extract social correlations in terms of vehicle states and outputs an intention probability vector. The trajectory prediction model fuses the intention probability vector, which enables it to obtain prior knowledge. For the intention prediction model, the accuracy can be improved by designing the multi-head attention. For the trajectory prediction model, the performance can be optimized by incorporating intention probability vectors and adding the LSTM. Verified on NGSIM and highD datasets, the experimental results show that this model has encouraging accuracy. Compared with the model without intention probability vectors, the impact of the model on NGSIM dataset and highD dataset in RMSE is improved by 57.27% and 58.70% respectively. Compared with two existed models, evaluation metrics of the intention prediction can be improved by 7.40-10.09% on NGSIM dataset and 2.17-2.69% on highD dataset within advanced prediction time 1s. This method provides the insights for designing advanced perceptual systems for autonomous vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
小鹿完成签到,获得积分10
10秒前
风趣煎蛋发布了新的文献求助10
11秒前
17秒前
风趣煎蛋完成签到,获得积分10
18秒前
小鹿发布了新的文献求助10
22秒前
25秒前
29秒前
testmanfuxk完成签到,获得积分10
30秒前
34秒前
libob发布了新的文献求助10
35秒前
1分钟前
思源应助zsp采纳,获得30
1分钟前
1分钟前
领导范儿应助556采纳,获得10
1分钟前
Persist6578完成签到 ,获得积分10
1分钟前
半城微凉应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
ljx完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
fx完成签到 ,获得积分10
2分钟前
ZZICU完成签到,获得积分10
2分钟前
文献完成签到 ,获得积分10
2分钟前
2分钟前
义气的钥匙完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Jasper应助yyyalles采纳,获得30
2分钟前
2分钟前
556发布了新的文献求助10
3分钟前
556完成签到 ,获得积分10
3分钟前
3分钟前
Weiyu完成签到 ,获得积分10
3分钟前
WUHUIWEN完成签到,获得积分10
3分钟前
3分钟前
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510902
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214