Dual Transformer Based Prediction for Lane Change Intentions and Trajectories in Mixed Traffic Environment

弹道 对偶(语法数字) 计算机科学 感知 变压器 人工智能 数据挖掘 机器学习 模拟 工程类 生物 电气工程 物理 文学类 艺术 电压 神经科学 天文
作者
Kai Gao,Xunhao Li,Bin Chen,Lin Hu,Jian Liu,Ronghua Du,Yongfu Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 6203-6216 被引量:45
标识
DOI:10.1109/tits.2023.3248842
摘要

In a mixed traffic environment of human and autonomous driving, it is crucial for an autonomous vehicle to predict the lane change intentions and trajectories of vehicles that pose a risk to it. However, due to the uncertainty of human intentions, accurately predicting lane change intentions and trajectories is a great challenge. Therefore, this paper aims to establish the connection between intentions and trajectories and propose a dual Transformer model for the target vehicle. The dual Transformer model contains a lane change intention prediction model and a trajectory prediction model. The lane change intention prediction model is able to extract social correlations in terms of vehicle states and outputs an intention probability vector. The trajectory prediction model fuses the intention probability vector, which enables it to obtain prior knowledge. For the intention prediction model, the accuracy can be improved by designing the multi-head attention. For the trajectory prediction model, the performance can be optimized by incorporating intention probability vectors and adding the LSTM. Verified on NGSIM and highD datasets, the experimental results show that this model has encouraging accuracy. Compared with the model without intention probability vectors, the impact of the model on NGSIM dataset and highD dataset in RMSE is improved by 57.27% and 58.70% respectively. Compared with two existed models, evaluation metrics of the intention prediction can be improved by 7.40-10.09% on NGSIM dataset and 2.17-2.69% on highD dataset within advanced prediction time 1s. This method provides the insights for designing advanced perceptual systems for autonomous vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫麒麟完成签到,获得积分10
刚刚
刚刚
勤劳高跟鞋完成签到 ,获得积分10
刚刚
1秒前
李健应助龙志强采纳,获得10
1秒前
1秒前
小木子完成签到,获得积分10
1秒前
轩辕剑身完成签到,获得积分0
2秒前
大白完成签到,获得积分10
2秒前
2秒前
斯文败类应助好困采纳,获得10
2秒前
胡建鹏完成签到 ,获得积分10
2秒前
3秒前
3秒前
大模型应助Young采纳,获得10
4秒前
嘉星糖完成签到,获得积分10
4秒前
一思完成签到,获得积分10
4秒前
甜蜜采波完成签到,获得积分10
5秒前
大气怜烟完成签到,获得积分10
5秒前
cdercder完成签到,获得积分0
5秒前
小巧的柚子完成签到,获得积分10
5秒前
spinor完成签到,获得积分10
5秒前
yxy完成签到,获得积分10
5秒前
菜菜完成签到 ,获得积分10
5秒前
凌云完成签到,获得积分10
6秒前
烟花应助刘小蕊采纳,获得10
6秒前
丹丹发布了新的文献求助10
6秒前
huk发布了新的文献求助10
6秒前
迪迪子发布了新的文献求助10
7秒前
滴答滴完成签到 ,获得积分10
8秒前
ywy发布了新的文献求助10
8秒前
Hua发布了新的文献求助10
8秒前
ding应助自信兔子采纳,获得10
10秒前
淡定的笙完成签到,获得积分10
10秒前
wjr完成签到,获得积分10
10秒前
故渊完成签到,获得积分10
12秒前
12秒前
keyanchong完成签到,获得积分10
12秒前
12秒前
SherlockJia应助菜菜采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402085
求助须知:如何正确求助?哪些是违规求助? 4520652
关于积分的说明 14080976
捐赠科研通 4434110
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426603
关于科研通互助平台的介绍 1405349