Dual Transformer Based Prediction for Lane Change Intentions and Trajectories in Mixed Traffic Environment

弹道 对偶(语法数字) 计算机科学 感知 人工智能 数据挖掘 机器学习 艺术 物理 文学类 天文 神经科学 生物
作者
Kai Gao,Xunhao Li,Bin Chen,Lin Hu,Jian Liu,Ronghua Du,Yongfu Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 6203-6216 被引量:21
标识
DOI:10.1109/tits.2023.3248842
摘要

In a mixed traffic environment of human and autonomous driving, it is crucial for an autonomous vehicle to predict the lane change intentions and trajectories of vehicles that pose a risk to it. However, due to the uncertainty of human intentions, accurately predicting lane change intentions and trajectories is a great challenge. Therefore, this paper aims to establish the connection between intentions and trajectories and propose a dual Transformer model for the target vehicle. The dual Transformer model contains a lane change intention prediction model and a trajectory prediction model. The lane change intention prediction model is able to extract social correlations in terms of vehicle states and outputs an intention probability vector. The trajectory prediction model fuses the intention probability vector, which enables it to obtain prior knowledge. For the intention prediction model, the accuracy can be improved by designing the multi-head attention. For the trajectory prediction model, the performance can be optimized by incorporating intention probability vectors and adding the LSTM. Verified on NGSIM and highD datasets, the experimental results show that this model has encouraging accuracy. Compared with the model without intention probability vectors, the impact of the model on NGSIM dataset and highD dataset in RMSE is improved by 57.27% and 58.70% respectively. Compared with two existed models, evaluation metrics of the intention prediction can be improved by 7.40-10.09% on NGSIM dataset and 2.17-2.69% on highD dataset within advanced prediction time 1s. This method provides the insights for designing advanced perceptual systems for autonomous vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yining发布了新的文献求助10
刚刚
无限小霜完成签到,获得积分10
1秒前
1秒前
隐形曼青应助huangpeihao采纳,获得10
2秒前
li完成签到,获得积分10
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
ice7完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
RebeccaHe应助科研通管家采纳,获得20
3秒前
思源应助科研通管家采纳,获得10
3秒前
随机子应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
CatC完成签到,获得积分10
4秒前
ggg完成签到,获得积分10
4秒前
小蘑菇应助科研通管家采纳,获得30
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
我爱酸菜鱼完成签到,获得积分10
4秒前
踏雪寻梅应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
款冬完成签到,获得积分10
4秒前
林林完成签到 ,获得积分10
5秒前
5秒前
小芒果完成签到,获得积分10
5秒前
韶忆秋完成签到,获得积分10
5秒前
Millennial完成签到,获得积分10
6秒前
6秒前
粗暴的海豚完成签到,获得积分10
6秒前
7秒前
专注的水壶完成签到 ,获得积分10
7秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180142
求助须知:如何正确求助?哪些是违规求助? 2830541
关于积分的说明 7978378
捐赠科研通 2492125
什么是DOI,文献DOI怎么找? 1329213
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954