已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual Transformer Based Prediction for Lane Change Intentions and Trajectories in Mixed Traffic Environment

弹道 对偶(语法数字) 计算机科学 感知 变压器 人工智能 数据挖掘 机器学习 模拟 工程类 生物 电气工程 物理 文学类 艺术 电压 神经科学 天文
作者
Kai Gao,Xunhao Li,Bin Chen,Lin Hu,Jian Liu,Ronghua Du,Yongfu Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 6203-6216 被引量:45
标识
DOI:10.1109/tits.2023.3248842
摘要

In a mixed traffic environment of human and autonomous driving, it is crucial for an autonomous vehicle to predict the lane change intentions and trajectories of vehicles that pose a risk to it. However, due to the uncertainty of human intentions, accurately predicting lane change intentions and trajectories is a great challenge. Therefore, this paper aims to establish the connection between intentions and trajectories and propose a dual Transformer model for the target vehicle. The dual Transformer model contains a lane change intention prediction model and a trajectory prediction model. The lane change intention prediction model is able to extract social correlations in terms of vehicle states and outputs an intention probability vector. The trajectory prediction model fuses the intention probability vector, which enables it to obtain prior knowledge. For the intention prediction model, the accuracy can be improved by designing the multi-head attention. For the trajectory prediction model, the performance can be optimized by incorporating intention probability vectors and adding the LSTM. Verified on NGSIM and highD datasets, the experimental results show that this model has encouraging accuracy. Compared with the model without intention probability vectors, the impact of the model on NGSIM dataset and highD dataset in RMSE is improved by 57.27% and 58.70% respectively. Compared with two existed models, evaluation metrics of the intention prediction can be improved by 7.40-10.09% on NGSIM dataset and 2.17-2.69% on highD dataset within advanced prediction time 1s. This method provides the insights for designing advanced perceptual systems for autonomous vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shime完成签到,获得积分10
1秒前
1秒前
1秒前
123发布了新的文献求助10
2秒前
2秒前
123完成签到,获得积分10
2秒前
3秒前
3秒前
晓婷婷发布了新的文献求助10
4秒前
若ruofeng发布了新的文献求助100
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
不懈奋进应助科研通管家采纳,获得30
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得12
5秒前
6秒前
冷酷愚志完成签到,获得积分10
6秒前
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
科研通AI5应助乐观的非笑采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
10秒前
LiuShenglan发布了新的文献求助10
10秒前
11秒前
13秒前
乐观的非笑完成签到,获得积分10
15秒前
15秒前
kerity发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
共享精神应助瞿人雄采纳,获得10
17秒前
科研通AI5应助Shiku采纳,获得10
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666163
求助须知:如何正确求助?哪些是违规求助? 3225175
关于积分的说明 9761817
捐赠科研通 2935171
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759187
科研通“疑难数据库(出版商)”最低求助积分说明 735153