Personalized Federated DARTS for Electricity Load Forecasting of Individual Buildings

计算机科学 负荷管理 需求响应 建筑工程 环境经济学 工程类 经济 电气工程
作者
Dalin Qin,Chenxi Wang,Qingsong Wen,Weiqi Chen,Liang Sun,Yi Wang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (6): 4888-4901 被引量:14
标识
DOI:10.1109/tsg.2023.3253855
摘要

Building-level load forecasting is becoming increasingly crucial since it forms the foundation for better building energy management, which will lower energy consumption and reduce CO2 emissions. However, building-level load forecasting faces the challenges of high load volatility and heterogeneous consumption behaviors. Simple regression models may fail to fit the complex load curves, whereas sophisticated models are prone to overfitting due to the limited data of an individual building. To this end, we develop a novel forecasting model that integrates federated learning (FL), the differentiable architecture search (DARTS) technique, and a two-stage personalization approach. Specifically, buildings are first grouped according to the model architectures, and for each building cluster, a global model is designed and trained in a federated manner. Then, a local fine-tuning approach is used to adapt the cluster global model to each individual building. In this way, data resources from multiple buildings can be utilized to construct high-performance forecasting models while protecting each building's data privacy. Furthermore, personalized models with specific architectures can be trained for heterogeneous buildings. Extensive experiments on a publicly available dataset are conducted to validate the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fenghp完成签到 ,获得积分20
2秒前
李健的粉丝团团长应助xun采纳,获得10
2秒前
3秒前
今后应助诺澜啊采纳,获得10
4秒前
共享精神应助fff采纳,获得10
6秒前
wyy完成签到,获得积分20
7秒前
8秒前
知识学爆完成签到,获得积分10
8秒前
10秒前
hxm完成签到,获得积分10
12秒前
12秒前
慕雪涵发布了新的文献求助10
15秒前
tkx是流氓兔完成签到,获得积分10
15秒前
16秒前
诺澜啊发布了新的文献求助10
17秒前
bean完成签到,获得积分10
19秒前
悦耳的柠檬完成签到,获得积分10
19秒前
19秒前
科研通AI2S应助酷炫翠桃采纳,获得10
19秒前
慕雪涵完成签到,获得积分10
22秒前
英俊的铭应助独特的尔风采纳,获得10
22秒前
T012发布了新的文献求助10
22秒前
22秒前
luna完成签到 ,获得积分10
24秒前
大模型应助bean采纳,获得10
24秒前
刻苦的小虾米完成签到,获得积分10
25秒前
Hou发布了新的文献求助20
25秒前
CipherSage应助小东西采纳,获得10
27秒前
打打应助柯不正采纳,获得10
27秒前
不懈奋进应助心台采纳,获得30
27秒前
深情安青应助fenghp采纳,获得10
27秒前
27秒前
SciGPT应助hklong采纳,获得10
28秒前
29秒前
29秒前
32秒前
vghvvjg发布了新的文献求助10
33秒前
33秒前
彩色德天完成签到 ,获得积分10
33秒前
35秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206745
求助须知:如何正确求助?哪些是违规求助? 2856198
关于积分的说明 8102939
捐赠科研通 2521287
什么是DOI,文献DOI怎么找? 1354335
科研通“疑难数据库(出版商)”最低求助积分说明 642012
邀请新用户注册赠送积分活动 613207