Personalized Federated DARTS for Electricity Load Forecasting of Individual Buildings

计算机科学 负荷管理 需求响应 建筑工程 环境经济学 工程类 经济 电气工程
作者
Dalin Qin,Chenxi Wang,Qingsong Wen,Weiqi Chen,Liang Sun,Yi Wang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (6): 4888-4901 被引量:14
标识
DOI:10.1109/tsg.2023.3253855
摘要

Building-level load forecasting is becoming increasingly crucial since it forms the foundation for better building energy management, which will lower energy consumption and reduce CO2 emissions. However, building-level load forecasting faces the challenges of high load volatility and heterogeneous consumption behaviors. Simple regression models may fail to fit the complex load curves, whereas sophisticated models are prone to overfitting due to the limited data of an individual building. To this end, we develop a novel forecasting model that integrates federated learning (FL), the differentiable architecture search (DARTS) technique, and a two-stage personalization approach. Specifically, buildings are first grouped according to the model architectures, and for each building cluster, a global model is designed and trained in a federated manner. Then, a local fine-tuning approach is used to adapt the cluster global model to each individual building. In this way, data resources from multiple buildings can be utilized to construct high-performance forecasting models while protecting each building's data privacy. Furthermore, personalized models with specific architectures can be trained for heterogeneous buildings. Extensive experiments on a publicly available dataset are conducted to validate the superiority of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
666完成签到,获得积分20
3秒前
吃橘子吗完成签到 ,获得积分10
3秒前
4秒前
4秒前
Brenna完成签到 ,获得积分10
5秒前
ddddddddddd发布了新的文献求助10
5秒前
666发布了新的文献求助10
5秒前
自由雨莲发布了新的文献求助10
6秒前
6秒前
7秒前
打打应助chengzi采纳,获得10
9秒前
kkscanl完成签到 ,获得积分10
9秒前
Pedro完成签到,获得积分20
9秒前
9秒前
科研通AI6应助美满的凤灵采纳,获得10
10秒前
June发布了新的文献求助10
10秒前
和谐念瑶发布了新的文献求助10
10秒前
独特海白完成签到,获得积分10
11秒前
12秒前
安静代萱发布了新的文献求助10
12秒前
糊涂的炳完成签到,获得积分10
15秒前
完美世界应助阿辉采纳,获得10
15秒前
求求科研发布了新的文献求助10
16秒前
Camellia发布了新的文献求助20
16秒前
hangzhen发布了新的文献求助10
17秒前
YEZQ完成签到,获得积分10
18秒前
pluto应助涵涵采纳,获得10
19秒前
橘里完成签到,获得积分10
19秒前
CHEN完成签到,获得积分20
20秒前
Augenstern关注了科研通微信公众号
21秒前
Quanta发布了新的文献求助10
21秒前
Lucas应助保奔采纳,获得10
23秒前
英俊的铭应助求求科研采纳,获得10
23秒前
24秒前
给钱谢谢发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567358
求助须知:如何正确求助?哪些是违规求助? 4652068
关于积分的说明 14698727
捐赠科研通 4593864
什么是DOI,文献DOI怎么找? 2520491
邀请新用户注册赠送积分活动 1492641
关于科研通互助平台的介绍 1463607