Personalized Federated DARTS for Electricity Load Forecasting of Individual Buildings

计算机科学 负荷管理 需求响应 建筑工程 环境经济学 工程类 经济 电气工程
作者
Dalin Qin,Chenxi Wang,Qingsong Wen,Weiqi Chen,Liang Sun,Yi Wang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (6): 4888-4901 被引量:14
标识
DOI:10.1109/tsg.2023.3253855
摘要

Building-level load forecasting is becoming increasingly crucial since it forms the foundation for better building energy management, which will lower energy consumption and reduce CO2 emissions. However, building-level load forecasting faces the challenges of high load volatility and heterogeneous consumption behaviors. Simple regression models may fail to fit the complex load curves, whereas sophisticated models are prone to overfitting due to the limited data of an individual building. To this end, we develop a novel forecasting model that integrates federated learning (FL), the differentiable architecture search (DARTS) technique, and a two-stage personalization approach. Specifically, buildings are first grouped according to the model architectures, and for each building cluster, a global model is designed and trained in a federated manner. Then, a local fine-tuning approach is used to adapt the cluster global model to each individual building. In this way, data resources from multiple buildings can be utilized to construct high-performance forecasting models while protecting each building's data privacy. Furthermore, personalized models with specific architectures can be trained for heterogeneous buildings. Extensive experiments on a publicly available dataset are conducted to validate the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经向卉完成签到,获得积分10
刚刚
收声发布了新的文献求助10
刚刚
刚刚
jingwen发布了新的文献求助10
1秒前
3秒前
lll应助孟秋采纳,获得10
3秒前
冰白完成签到,获得积分10
4秒前
初心完成签到,获得积分10
5秒前
852应助dcdsdc采纳,获得10
5秒前
夏青荷发布了新的文献求助10
5秒前
5秒前
7秒前
lotu_fr完成签到,获得积分10
7秒前
人生如梦应助曾会锋采纳,获得10
8秒前
8秒前
云ch发布了新的文献求助10
9秒前
9秒前
我才是孙悟空完成签到,获得积分10
10秒前
木日发布了新的文献求助10
10秒前
淡定的忆山完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
老张头秃了完成签到,获得积分10
13秒前
收声发布了新的文献求助10
14秒前
YUQIONG发布了新的文献求助10
14秒前
点点发布了新的文献求助10
15秒前
chaoli完成签到,获得积分10
17秒前
Owen应助zhouyan采纳,获得10
17秒前
赘婿应助Mody采纳,获得10
18秒前
兴奋的发卡完成签到 ,获得积分10
19秒前
月神满月完成签到,获得积分10
21秒前
dong应助hope采纳,获得10
22秒前
芋泥完成签到,获得积分10
23秒前
琪宝非宝发布了新的文献求助10
24秒前
24秒前
SciGPT应助我才是孙悟空采纳,获得10
24秒前
Owllight发布了新的文献求助10
25秒前
小二郎应助生椰拿铁采纳,获得10
27秒前
tdd完成签到,获得积分10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150