Establishment and Validation of Predictive Model of Tophus in Gout Patients

医学 逻辑回归 痛风 托弗斯 置信区间 内科学 血沉 多项式logistic回归 Lasso(编程语言) 高尿酸血症 机器学习 尿酸 万维网 计算机科学
作者
Tianyi Lei,Jianwei Guo,Peng Wang,Zeng Zhang,Shaowei Niu,Quan‐Bo Zhang,Yufeng Qing
出处
期刊:Journal of Clinical Medicine [Multidisciplinary Digital Publishing Institute]
卷期号:12 (5): 1755-1755 被引量:14
标识
DOI:10.3390/jcm12051755
摘要

(1) Background: A tophus is a clinical manifestation of advanced gout, and in some patients could lead to joint deformities, fractures, and even serious complications in unusual sites. Therefore, to explore the factors related to the occurrence of tophi and establish a prediction model is clinically significant. (2) Objective: to study the occurrence of tophi in patients with gout and to construct a predictive model to evaluate its predictive efficacy. (3) Methods: The clinical data of 702 gout patients were analyzed by using cross-sectional data of North Sichuan Medical College. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression were used to analyze predictors. Multiple machine learning (ML) classification models are integrated to analyze and identify the optimal model, and Shapley Additive exPlanations (SHAP) interpretation was developed for personalized risk assessment. (4) Results: Compliance of urate-lowering therapy (ULT), Body Mass Index (BMI), course of disease, annual attack frequency, polyjoint involvement, history of drinking, family history of gout, estimated glomerular filtration rate (eGFR), and erythrocyte sedimentation rate (ESR) were the predictors of the occurrence of tophi. Logistic classification model was the optimal model, test set area under curve (AUC) (95% confidence interval, CI): 0.888 (0.839-0.937), accuracy: 0.763, sensitivity: 0.852, and specificity: 0.803. (5) Conclusions: We constructed a logistic regression model and explained it with the SHAP method, providing evidence for preventing tophus and guidance for individual treatment of different patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
芋泥橙子完成签到,获得积分10
1秒前
花椰菜头完成签到,获得积分10
1秒前
科研通AI5应助付XR采纳,获得10
3秒前
酷炫迎波完成签到,获得积分10
3秒前
迪迦奥特曼完成签到,获得积分10
3秒前
CipherSage应助羽羊周周采纳,获得10
4秒前
4秒前
bkagyin应助芋泥橙子采纳,获得10
4秒前
出现在uwuh完成签到,获得积分10
4秒前
毛儿豆儿完成签到,获得积分10
5秒前
小乌龟完成签到,获得积分10
6秒前
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
小乌龟发布了新的文献求助10
9秒前
bkagyin应助科研通管家采纳,获得10
10秒前
xxxxx应助科研通管家采纳,获得20
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
深情安青应助可耐的靖琪采纳,获得10
12秒前
烟花应助mirror采纳,获得30
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740628
求助须知:如何正确求助?哪些是违规求助? 3283472
关于积分的说明 10035486
捐赠科研通 3000287
什么是DOI,文献DOI怎么找? 1646438
邀请新用户注册赠送积分活动 783615
科研通“疑难数据库(出版商)”最低求助积分说明 750411