DL-PR: Generalized automatic modulation classification method based on deep learning with priori regularization

计算机科学 正规化(语言学) 先验与后验 人工智能 深度学习 推论 机器学习 模式识别(心理学) 算法 哲学 认识论
作者
Qinghe Zheng,Xinyu Tian,Zhiguo Yu,Hongjun Wang,Abdussalam Elhanashi,Sergio Saponara
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:122: 106082-106082 被引量:73
标识
DOI:10.1016/j.engappai.2023.106082
摘要

Automatic modulation classification (AMC) is an essential and indispensable topic in the development of cognitive radios. It is the cornerstone of adaptive modulation and demodulation capabilities to perceive and understand surrounding environments and make corresponding decisions. In this paper, we propose a priori regularization method in deep learning (DL-PR) for guiding loss optimization during model training process. The regularization factor designed by the combination of inter-class confrontation factor, global and dimensional divergence can help increase the inter-class distance and reduce the intra-class distance of samples. While preserving the original information of received signals as much as possible, it makes full use of the prior knowledge in the signal transmission process and ultimately helps deep learning models to be well generalized on signals with various signal-to-noise ratios (SNRs). As far as we know, this is the first attempt to regularize deep learning models based on SNR distribution of samples to improve AMC accuracy. Moreover, it can be proved that priori regularization can be interpreted as implicit data augmentation and model ensemble methods. By comparing with a series of state-of-the-art AMC methods and different regularization techniques on the public dataset RadioML 2016.10a, experimental results of multiple deep learning models illustrate the superiority of DL-PR, including CNN with accuracy of 62.6% and inference time of 0.82 ms per signal, LSTM with 61.8% and 0.87 ms, and hybrid CNN–LSTM with 64.2% and 0.94 ms. In practical applications, DL-PR can be also easily applied to complex environments due to its robustness to hyper-parameters and SNR estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三岁完成签到,获得积分20
1秒前
1秒前
romance发布了新的文献求助10
1秒前
111完成签到,获得积分10
1秒前
乐乐应助睡懒觉的啊眠采纳,获得10
2秒前
2秒前
请假了发布了新的文献求助10
4秒前
小耗子完成签到,获得积分10
4秒前
5秒前
愤怒的一笑完成签到,获得积分10
6秒前
BWZ发布了新的文献求助10
6秒前
nana湘发布了新的文献求助10
6秒前
6秒前
mo完成签到,获得积分10
7秒前
7秒前
越野发布了新的文献求助30
7秒前
沉默的半鬼完成签到,获得积分10
7秒前
阿白发布了新的文献求助10
7秒前
诗轩发布了新的文献求助10
8秒前
风趣的胜应助路明非采纳,获得10
8秒前
Chen完成签到,获得积分10
8秒前
赘婿应助果实采纳,获得10
9秒前
Catalysis123完成签到,获得积分10
10秒前
wanci应助知性的二娘采纳,获得10
10秒前
11秒前
11秒前
11秒前
博修发布了新的文献求助10
12秒前
快乐的奕涵完成签到,获得积分10
12秒前
慕青应助果实采纳,获得10
13秒前
arisfield完成签到,获得积分10
13秒前
14秒前
交通小白完成签到,获得积分10
14秒前
华仔应助Catalysis123采纳,获得10
14秒前
14秒前
zx发布了新的文献求助10
15秒前
Nelson_Foo发布了新的文献求助10
15秒前
无花果应助xiangoak采纳,获得10
15秒前
15秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960824
求助须知:如何正确求助?哪些是违规求助? 3507059
关于积分的说明 11133511
捐赠科研通 3239361
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872160
科研通“疑难数据库(出版商)”最低求助积分说明 803149