DL-PR: Generalized automatic modulation classification method based on deep learning with priori regularization

计算机科学 正规化(语言学) 先验与后验 人工智能 深度学习 推论 机器学习 模式识别(心理学) 算法 认识论 哲学
作者
Qinghe Zheng,Xinyu Tian,Zhiguo Yu,Hongjun Wang,Abdussalam Elhanashi,Sergio Saponara
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:122: 106082-106082 被引量:51
标识
DOI:10.1016/j.engappai.2023.106082
摘要

Automatic modulation classification (AMC) is an essential and indispensable topic in the development of cognitive radios. It is the cornerstone of adaptive modulation and demodulation capabilities to perceive and understand surrounding environments and make corresponding decisions. In this paper, we propose a priori regularization method in deep learning (DL-PR) for guiding loss optimization during model training process. The regularization factor designed by the combination of inter-class confrontation factor, global and dimensional divergence can help increase the inter-class distance and reduce the intra-class distance of samples. While preserving the original information of received signals as much as possible, it makes full use of the prior knowledge in the signal transmission process and ultimately helps deep learning models to be well generalized on signals with various signal-to-noise ratios (SNRs). As far as we know, this is the first attempt to regularize deep learning models based on SNR distribution of samples to improve AMC accuracy. Moreover, it can be proved that priori regularization can be interpreted as implicit data augmentation and model ensemble methods. By comparing with a series of state-of-the-art AMC methods and different regularization techniques on the public dataset RadioML 2016.10a, experimental results of multiple deep learning models illustrate the superiority of DL-PR, including CNN with accuracy of 62.6% and inference time of 0.82 ms per signal, LSTM with 61.8% and 0.87 ms, and hybrid CNN–LSTM with 64.2% and 0.94 ms. In practical applications, DL-PR can be also easily applied to complex environments due to its robustness to hyper-parameters and SNR estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
藏识完成签到,获得积分10
2秒前
以甲引丁发布了新的文献求助10
2秒前
优秀剑愁完成签到 ,获得积分10
7秒前
小张z完成签到,获得积分10
7秒前
大福完成签到,获得积分10
8秒前
机灵晓刚完成签到 ,获得积分10
11秒前
羊毛毛衣完成签到,获得积分10
12秒前
橘涂完成签到 ,获得积分10
14秒前
17秒前
千里共婵娟完成签到,获得积分10
19秒前
刻苦冷菱完成签到 ,获得积分10
22秒前
XZY发布了新的文献求助10
23秒前
25秒前
酷酷的思萱完成签到,获得积分10
26秒前
早日发nature完成签到 ,获得积分10
27秒前
雨齐完成签到,获得积分10
27秒前
善学以致用应助ZSmile采纳,获得20
30秒前
tong发布了新的文献求助10
30秒前
朴实的小萱完成签到 ,获得积分10
31秒前
酷波er应助1huiqina采纳,获得30
31秒前
嗨嗨完成签到,获得积分10
32秒前
35秒前
35秒前
醉生梦死完成签到 ,获得积分10
36秒前
Axel完成签到,获得积分10
37秒前
秀丽白凝发布了新的文献求助20
37秒前
JamesPei应助奇奇吃面采纳,获得10
38秒前
天涯倦客完成签到,获得积分10
38秒前
万能图书馆应助叶孤城采纳,获得10
39秒前
Kk发布了新的文献求助10
40秒前
wlp鹏完成签到,获得积分10
40秒前
踏雪无痕完成签到,获得积分10
45秒前
46秒前
46秒前
47秒前
47秒前
47秒前
zz应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
Orange应助科研通管家采纳,获得10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137627
求助须知:如何正确求助?哪些是违规求助? 2788531
关于积分的说明 7787471
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300119
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023