PLA-GNN: Computational inference of protein subcellular location alterations under drug treatments with deep graph neural networks

亚细胞定位 蛋白质亚细胞定位预测 计算机科学 推论 人工神经网络 图形 计算生物学 药物靶点 药品 人工智能 机器学习 生物 理论计算机科学 基因 生物化学 药理学
作者
Ren-Hua Wang,Tao Luo,Hanlin Zhang,Pu-Feng Du
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:157: 106775-106775 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.106775
摘要

The aberrant protein sorting has been observed in many conditions, including complex diseases, drug treatments, and environmental stresses. It is important to systematically identify protein mis-localization events in a given condition. Experimental methods for finding mis-localized proteins are always costly and time consuming. Predicting protein subcellular localizations has been studied for many years. However, only a handful of existing works considered protein subcellular location alterations. We proposed a computational method for identifying alterations of protein subcellular locations under drug treatments. We took three drugs, including TSA (trichostain A), bortezomib and tacrolimus, as instances for this study. By introducing dynamic protein-protein interaction networks, graph neural network algorithms were applied to aggregate topological information under different conditions. We systematically reported potential protein mis-localization events under drug treatments. As far as we know, this is the first attempt to find protein mis-localization events computationally in drug treatment conditions. Literatures validated that a number of proteins, which are highly related to pharmacological mechanisms of these drugs, may undergo protein localization alterations. We name our method as PLA-GNN (Protein Localization Alteration by Graph Neural Networks). It can be extended to other drugs and other conditions. All datasets and codes of this study has been deposited in a GitHub repository (https://github.com/quinlanW/PLA-GNN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风云发布了新的文献求助10
刚刚
搜集达人应助王哈哈哈哈采纳,获得10
刚刚
忧郁的莫茗完成签到,获得积分10
1秒前
哈哈完成签到,获得积分10
1秒前
佳丽发布了新的文献求助10
1秒前
niuniu发布了新的文献求助10
1秒前
3秒前
4秒前
4秒前
5秒前
hw完成签到 ,获得积分10
5秒前
yxh295完成签到,获得积分10
6秒前
6秒前
莫非完成签到,获得积分10
7秒前
杳鸢应助李喜喜采纳,获得10
7秒前
55555发布了新的文献求助20
7秒前
7秒前
8秒前
JaneChen发布了新的文献求助10
8秒前
111发布了新的文献求助10
9秒前
浅尝离白应助若空采纳,获得30
9秒前
李玉琼完成签到,获得积分10
10秒前
wyl完成签到,获得积分10
10秒前
yxh295发布了新的文献求助10
11秒前
zyy发布了新的文献求助30
11秒前
星辰大海应助小蒋采纳,获得10
12秒前
hn完成签到,获得积分10
12秒前
共享精神应助yaooo采纳,获得10
12秒前
cchen完成签到 ,获得积分10
13秒前
13秒前
蔺忘幽发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
18秒前
烟花应助糟糕的平彤采纳,获得10
19秒前
苏漠北完成签到,获得积分10
20秒前
dondon发布了新的文献求助20
20秒前
wanci应助徐安琪采纳,获得10
20秒前
多边形发布了新的文献求助10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223022
求助须知:如何正确求助?哪些是违规求助? 2871793
关于积分的说明 8177057
捐赠科研通 2538658
什么是DOI,文献DOI怎么找? 1370749
科研通“疑难数据库(出版商)”最低求助积分说明 645870
邀请新用户注册赠送积分活动 619832