PLA-GNN: Computational inference of protein subcellular location alterations under drug treatments with deep graph neural networks

亚细胞定位 蛋白质亚细胞定位预测 计算机科学 推论 人工神经网络 图形 计算生物学 药物靶点 药品 人工智能 机器学习 生物 理论计算机科学 基因 生物化学 药理学
作者
Ren-Hua Wang,Tao Luo,Hanlin Zhang,Pu-Feng Du
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106775-106775 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.106775
摘要

The aberrant protein sorting has been observed in many conditions, including complex diseases, drug treatments, and environmental stresses. It is important to systematically identify protein mis-localization events in a given condition. Experimental methods for finding mis-localized proteins are always costly and time consuming. Predicting protein subcellular localizations has been studied for many years. However, only a handful of existing works considered protein subcellular location alterations. We proposed a computational method for identifying alterations of protein subcellular locations under drug treatments. We took three drugs, including TSA (trichostain A), bortezomib and tacrolimus, as instances for this study. By introducing dynamic protein-protein interaction networks, graph neural network algorithms were applied to aggregate topological information under different conditions. We systematically reported potential protein mis-localization events under drug treatments. As far as we know, this is the first attempt to find protein mis-localization events computationally in drug treatment conditions. Literatures validated that a number of proteins, which are highly related to pharmacological mechanisms of these drugs, may undergo protein localization alterations. We name our method as PLA-GNN (Protein Localization Alteration by Graph Neural Networks). It can be extended to other drugs and other conditions. All datasets and codes of this study has been deposited in a GitHub repository (https://github.com/quinlanW/PLA-GNN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangjie发布了新的文献求助10
1秒前
64658应助聪慧冰淇淋采纳,获得10
1秒前
1秒前
1秒前
张秉环完成签到 ,获得积分10
2秒前
英吉利25发布了新的文献求助10
3秒前
传奇3应助caixiayin采纳,获得30
3秒前
星辰大海应助奋斗的宛亦采纳,获得10
3秒前
Karry完成签到 ,获得积分10
4秒前
4秒前
5秒前
nqyKOj发布了新的文献求助20
5秒前
JamesPei应助HYI采纳,获得10
5秒前
myj发布了新的文献求助10
5秒前
欣欣完成签到,获得积分10
6秒前
Lucifer完成签到,获得积分10
6秒前
6秒前
duli发布了新的文献求助10
6秒前
6秒前
7秒前
Owen应助认真柜子采纳,获得10
7秒前
FashionBoy应助薇薇安采纳,获得10
7秒前
科研通AI5应助欢呼妙菱采纳,获得10
8秒前
霸气鞯完成签到 ,获得积分10
8秒前
xxcarry完成签到 ,获得积分10
8秒前
8秒前
rlix发布了新的文献求助10
9秒前
个性梦蕊发布了新的文献求助10
9秒前
欣欣发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
Jasper应助俏皮的鞋垫采纳,获得10
11秒前
默默水之完成签到,获得积分10
11秒前
12秒前
22发布了新的文献求助10
12秒前
carrier_hc完成签到,获得积分10
13秒前
fairy完成签到,获得积分10
13秒前
Jiang发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635