PLA-GNN: Computational inference of protein subcellular location alterations under drug treatments with deep graph neural networks

亚细胞定位 蛋白质亚细胞定位预测 计算机科学 推论 人工神经网络 图形 计算生物学 药物靶点 药品 人工智能 机器学习 生物 理论计算机科学 基因 生物化学 药理学
作者
Ren-Hua Wang,Tao Luo,Hanlin Zhang,Pu-Feng Du
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:157: 106775-106775 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.106775
摘要

The aberrant protein sorting has been observed in many conditions, including complex diseases, drug treatments, and environmental stresses. It is important to systematically identify protein mis-localization events in a given condition. Experimental methods for finding mis-localized proteins are always costly and time consuming. Predicting protein subcellular localizations has been studied for many years. However, only a handful of existing works considered protein subcellular location alterations. We proposed a computational method for identifying alterations of protein subcellular locations under drug treatments. We took three drugs, including TSA (trichostain A), bortezomib and tacrolimus, as instances for this study. By introducing dynamic protein-protein interaction networks, graph neural network algorithms were applied to aggregate topological information under different conditions. We systematically reported potential protein mis-localization events under drug treatments. As far as we know, this is the first attempt to find protein mis-localization events computationally in drug treatment conditions. Literatures validated that a number of proteins, which are highly related to pharmacological mechanisms of these drugs, may undergo protein localization alterations. We name our method as PLA-GNN (Protein Localization Alteration by Graph Neural Networks). It can be extended to other drugs and other conditions. All datasets and codes of this study has been deposited in a GitHub repository (https://github.com/quinlanW/PLA-GNN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助长征星火采纳,获得10
刚刚
刚刚
dog发布了新的文献求助10
1秒前
Shanglinqin发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
一一完成签到,获得积分10
3秒前
3秒前
会会完成签到,获得积分20
3秒前
英姑应助调皮的无招采纳,获得30
3秒前
lavendaer发布了新的文献求助10
4秒前
小蘑菇应助zhang采纳,获得10
4秒前
4秒前
5秒前
5秒前
知悉完成签到,获得积分10
5秒前
5秒前
Owen应助与一人同游采纳,获得10
5秒前
Orange应助浮浮采纳,获得10
5秒前
5秒前
5秒前
6秒前
若水发布了新的文献求助10
6秒前
6秒前
6秒前
会会发布了新的文献求助10
6秒前
7秒前
SciGPT应助派大星不科研采纳,获得10
7秒前
火火发布了新的文献求助10
7秒前
7秒前
英俊的铭应助hhwoyebudong采纳,获得10
7秒前
丘比特应助yanier采纳,获得10
8秒前
Mmmmm完成签到,获得积分10
8秒前
fangang发布了新的文献求助30
8秒前
lize5493发布了新的文献求助10
8秒前
小马甲应助wackykao采纳,获得10
8秒前
8秒前
qingmoheng应助无羡采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710