Extracting social determinants of health events with transformer-based multitask, multilabel named entity recognition

人工智能 计算机科学 变压器 机器学习 召回 F1得分 精确性和召回率 自然语言处理 健康的社会决定因素 政治学 心理学 医疗保健 认知心理学 工程类 电气工程 电压 法学
作者
Russell Richie,Vı́ctor Ruiz,Sifei Han,Lingyun Shi,Fuchiang Tsui
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (8): 1379-1388 被引量:4
标识
DOI:10.1093/jamia/ocad046
摘要

Abstract Objective Social determinants of health (SDOH) are nonclinical, socioeconomic conditions that influence patient health and quality of life. Identifying SDOH may help clinicians target interventions. However, SDOH are more frequently available in narrative notes compared to structured electronic health records. The 2022 n2c2 Track 2 competition released clinical notes annotated for SDOH to promote development of NLP systems for extracting SDOH. We developed a system addressing 3 limitations in state-of-the-art SDOH extraction: the inability to identify multiple SDOH events of the same type per sentence, overlapping SDOH attributes within text spans, and SDOH spanning multiple sentences. Materials and Methods We developed and evaluated a 2-stage architecture. In stage 1, we trained a BioClinical-BERT-based named entity recognition system to extract SDOH event triggers, that is, text spans indicating substance use, employment, or living status. In stage 2, we trained a multitask, multilabel NER to extract arguments (eg, alcohol “type”) for events extracted in stage 1. Evaluation was performed across 3 subtasks differing by provenance of training and validation data using precision, recall, and F1 scores. Results When trained and validated on data from the same site, we achieved 0.87 precision, 0.89 recall, and 0.88 F1. Across all subtasks, we ranked between second and fourth place in the competition and always within 0.02 F1 from first. Conclusions Our 2-stage, deep-learning-based NLP system effectively extracted SDOH events from clinical notes. This was achieved with a novel classification framework that leveraged simpler architectures compared to state-of-the-art systems. Improved SDOH extraction may help clinicians improve health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助啊呆哦采纳,获得10
4秒前
4秒前
兮颜完成签到 ,获得积分10
6秒前
Wanyeweiyu完成签到,获得积分10
6秒前
完犊子发布了新的文献求助10
6秒前
健脊护柱完成签到 ,获得积分10
7秒前
hebhm发布了新的文献求助10
7秒前
鱼雷完成签到,获得积分10
8秒前
852应助张欢采纳,获得10
12秒前
HI完成签到 ,获得积分10
14秒前
小昼完成签到 ,获得积分10
15秒前
16秒前
小蘑菇应助hebhm采纳,获得10
16秒前
平凡世界完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
含光完成签到,获得积分10
17秒前
小谭完成签到 ,获得积分10
17秒前
airtermis完成签到 ,获得积分10
18秒前
syl发布了新的文献求助10
20秒前
风雨霖霖完成签到,获得积分10
20秒前
山河星梦完成签到,获得积分10
23秒前
ZDM6094完成签到 ,获得积分10
24秒前
完犊子发布了新的文献求助10
25秒前
25秒前
28秒前
kxran发布了新的文献求助10
30秒前
TianFuAI完成签到,获得积分10
30秒前
张欢发布了新的文献求助10
31秒前
乐乐应助完犊子采纳,获得10
33秒前
闪闪的绣连完成签到,获得积分10
36秒前
香蕉觅云应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
在水一方应助科研通管家采纳,获得10
36秒前
CodeCraft应助科研通管家采纳,获得20
36秒前
1111111111应助科研通管家采纳,获得10
36秒前
风清扬应助科研通管家采纳,获得100
36秒前
36秒前
36秒前
iuhgnor完成签到,获得积分0
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910726
求助须知:如何正确求助?哪些是违规求助? 4186414
关于积分的说明 12999570
捐赠科研通 3953936
什么是DOI,文献DOI怎么找? 2168187
邀请新用户注册赠送积分活动 1186604
关于科研通互助平台的介绍 1093845