Extracting social determinants of health events with transformer-based multitask, multilabel named entity recognition

人工智能 计算机科学 变压器 机器学习 召回 F1得分 精确性和召回率 自然语言处理 健康的社会决定因素 政治学 心理学 医疗保健 认知心理学 工程类 电气工程 电压 法学
作者
Russell Richie,Vı́ctor Ruiz,Sifei Han,Lingyun Shi,Fuchiang Tsui
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (8): 1379-1388 被引量:4
标识
DOI:10.1093/jamia/ocad046
摘要

Abstract Objective Social determinants of health (SDOH) are nonclinical, socioeconomic conditions that influence patient health and quality of life. Identifying SDOH may help clinicians target interventions. However, SDOH are more frequently available in narrative notes compared to structured electronic health records. The 2022 n2c2 Track 2 competition released clinical notes annotated for SDOH to promote development of NLP systems for extracting SDOH. We developed a system addressing 3 limitations in state-of-the-art SDOH extraction: the inability to identify multiple SDOH events of the same type per sentence, overlapping SDOH attributes within text spans, and SDOH spanning multiple sentences. Materials and Methods We developed and evaluated a 2-stage architecture. In stage 1, we trained a BioClinical-BERT-based named entity recognition system to extract SDOH event triggers, that is, text spans indicating substance use, employment, or living status. In stage 2, we trained a multitask, multilabel NER to extract arguments (eg, alcohol “type”) for events extracted in stage 1. Evaluation was performed across 3 subtasks differing by provenance of training and validation data using precision, recall, and F1 scores. Results When trained and validated on data from the same site, we achieved 0.87 precision, 0.89 recall, and 0.88 F1. Across all subtasks, we ranked between second and fourth place in the competition and always within 0.02 F1 from first. Conclusions Our 2-stage, deep-learning-based NLP system effectively extracted SDOH events from clinical notes. This was achieved with a novel classification framework that leveraged simpler architectures compared to state-of-the-art systems. Improved SDOH extraction may help clinicians improve health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
刚刚
sunzhiyu233发布了新的文献求助10
1秒前
Raul完成签到 ,获得积分10
1秒前
1秒前
伯尔尼圆白菜完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
buuyoo完成签到,获得积分10
2秒前
科研通AI5应助魏煜佳采纳,获得10
2秒前
LLxiaolong完成签到,获得积分10
2秒前
3秒前
3秒前
巨噬细胞A完成签到,获得积分10
3秒前
3秒前
我要读博士完成签到 ,获得积分10
3秒前
xxq完成签到,获得积分20
3秒前
福气小姐完成签到 ,获得积分10
3秒前
搜集达人应助jjy采纳,获得10
4秒前
4秒前
郑总完成签到,获得积分10
4秒前
CipherSage应助马尼拉采纳,获得10
4秒前
SCI完成签到 ,获得积分10
5秒前
6秒前
healer发布了新的文献求助10
6秒前
123完成签到,获得积分20
7秒前
李健的小迷弟应助yili采纳,获得10
7秒前
L.完成签到,获得积分10
7秒前
木子发布了新的文献求助10
7秒前
威武诺言发布了新的文献求助10
7秒前
科研通AI5应助孙二二采纳,获得10
7秒前
7秒前
英姑应助rookie_b0采纳,获得10
8秒前
毛慢慢发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
kangkang完成签到,获得积分10
9秒前
丘比特应助东风第一枝采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759