Extracting social determinants of health events with transformer-based multitask, multilabel named entity recognition

人工智能 计算机科学 变压器 机器学习 召回 F1得分 精确性和召回率 自然语言处理 健康的社会决定因素 政治学 心理学 医疗保健 认知心理学 工程类 电压 电气工程 法学
作者
Russell Richie,Vı́ctor Ruiz,Sifei Han,Lingyun Shi,Fuchiang Tsui
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (8): 1379-1388 被引量:4
标识
DOI:10.1093/jamia/ocad046
摘要

Abstract Objective Social determinants of health (SDOH) are nonclinical, socioeconomic conditions that influence patient health and quality of life. Identifying SDOH may help clinicians target interventions. However, SDOH are more frequently available in narrative notes compared to structured electronic health records. The 2022 n2c2 Track 2 competition released clinical notes annotated for SDOH to promote development of NLP systems for extracting SDOH. We developed a system addressing 3 limitations in state-of-the-art SDOH extraction: the inability to identify multiple SDOH events of the same type per sentence, overlapping SDOH attributes within text spans, and SDOH spanning multiple sentences. Materials and Methods We developed and evaluated a 2-stage architecture. In stage 1, we trained a BioClinical-BERT-based named entity recognition system to extract SDOH event triggers, that is, text spans indicating substance use, employment, or living status. In stage 2, we trained a multitask, multilabel NER to extract arguments (eg, alcohol “type”) for events extracted in stage 1. Evaluation was performed across 3 subtasks differing by provenance of training and validation data using precision, recall, and F1 scores. Results When trained and validated on data from the same site, we achieved 0.87 precision, 0.89 recall, and 0.88 F1. Across all subtasks, we ranked between second and fourth place in the competition and always within 0.02 F1 from first. Conclusions Our 2-stage, deep-learning-based NLP system effectively extracted SDOH events from clinical notes. This was achieved with a novel classification framework that leveraged simpler architectures compared to state-of-the-art systems. Improved SDOH extraction may help clinicians improve health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
李乾坤完成签到,获得积分10
1秒前
tt发布了新的文献求助10
1秒前
2秒前
浮游应助小芦铃采纳,获得10
2秒前
Edward完成签到,获得积分10
2秒前
呆萌安萱完成签到,获得积分10
3秒前
两眼一睁就是困完成签到,获得积分10
4秒前
科研通AI6应助化学喵采纳,获得10
4秒前
4秒前
hbhbj发布了新的文献求助10
6秒前
6秒前
爆米花应助Pluto采纳,获得10
7秒前
jiangzong完成签到,获得积分10
7秒前
隐形曼青应助找不到文献采纳,获得10
7秒前
帅气小霜完成签到,获得积分10
7秒前
LKSkywalker完成签到,获得积分10
8秒前
TXQ发布了新的文献求助10
10秒前
英俊的铭应助zhuzhu采纳,获得10
11秒前
Xx完成签到,获得积分10
11秒前
Epiphany完成签到,获得积分10
11秒前
欣慰的绿蝶关注了科研通微信公众号
12秒前
波波发布了新的文献求助10
12秒前
hbhbj发布了新的文献求助10
13秒前
CipherSage应助缥缈的夜梅采纳,获得10
13秒前
13秒前
14秒前
16秒前
脑洞疼应助13采纳,获得20
16秒前
完美世界应助skyler采纳,获得10
16秒前
无花果应助小白采纳,获得10
18秒前
19秒前
orixero应助银玥采纳,获得10
20秒前
20秒前
ll完成签到,获得积分10
20秒前
高数数完成签到 ,获得积分10
20秒前
awuwuwu发布了新的文献求助10
21秒前
科研通AI6应助美好向日葵采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264928
求助须知:如何正确求助?哪些是违规求助? 4425065
关于积分的说明 13775359
捐赠科研通 4300354
什么是DOI,文献DOI怎么找? 2359671
邀请新用户注册赠送积分活动 1355731
关于科研通互助平台的介绍 1317058