Extracting social determinants of health events with transformer-based multitask, multilabel named entity recognition

人工智能 计算机科学 变压器 机器学习 召回 F1得分 精确性和召回率 自然语言处理 健康的社会决定因素 政治学 心理学 医疗保健 认知心理学 工程类 电压 电气工程 法学
作者
Russell Richie,Vı́ctor Ruiz,Sifei Han,Lingyun Shi,Fuchiang Tsui
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (8): 1379-1388 被引量:4
标识
DOI:10.1093/jamia/ocad046
摘要

Abstract Objective Social determinants of health (SDOH) are nonclinical, socioeconomic conditions that influence patient health and quality of life. Identifying SDOH may help clinicians target interventions. However, SDOH are more frequently available in narrative notes compared to structured electronic health records. The 2022 n2c2 Track 2 competition released clinical notes annotated for SDOH to promote development of NLP systems for extracting SDOH. We developed a system addressing 3 limitations in state-of-the-art SDOH extraction: the inability to identify multiple SDOH events of the same type per sentence, overlapping SDOH attributes within text spans, and SDOH spanning multiple sentences. Materials and Methods We developed and evaluated a 2-stage architecture. In stage 1, we trained a BioClinical-BERT-based named entity recognition system to extract SDOH event triggers, that is, text spans indicating substance use, employment, or living status. In stage 2, we trained a multitask, multilabel NER to extract arguments (eg, alcohol “type”) for events extracted in stage 1. Evaluation was performed across 3 subtasks differing by provenance of training and validation data using precision, recall, and F1 scores. Results When trained and validated on data from the same site, we achieved 0.87 precision, 0.89 recall, and 0.88 F1. Across all subtasks, we ranked between second and fourth place in the competition and always within 0.02 F1 from first. Conclusions Our 2-stage, deep-learning-based NLP system effectively extracted SDOH events from clinical notes. This was achieved with a novel classification framework that leveraged simpler architectures compared to state-of-the-art systems. Improved SDOH extraction may help clinicians improve health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
孤独梦安完成签到 ,获得积分10
4秒前
英俊完成签到,获得积分10
4秒前
乐乐应助风格化橙采纳,获得10
5秒前
喜悦发卡完成签到,获得积分10
6秒前
活力的泥猴桃完成签到 ,获得积分10
7秒前
8秒前
xinxinwen完成签到,获得积分10
8秒前
9秒前
9秒前
EMMA发布了新的文献求助10
10秒前
Cc关闭了Cc文献求助
10秒前
TTRO完成签到,获得积分10
10秒前
m_seek完成签到,获得积分10
11秒前
木心长发布了新的文献求助10
12秒前
12秒前
土二给土二的求助进行了留言
12秒前
13秒前
在水一方应助十五采纳,获得10
15秒前
Yzh完成签到,获得积分10
15秒前
smile发布了新的文献求助10
16秒前
Michael Zhang完成签到 ,获得积分10
16秒前
邓年念发布了新的文献求助10
17秒前
云那边的山发布了新的文献求助300
18秒前
英姑应助EMMA采纳,获得10
19秒前
浮游应助xxx采纳,获得10
20秒前
深情安青应助小王采纳,获得30
20秒前
AIKaikai发布了新的文献求助10
21秒前
21秒前
23秒前
24秒前
怕孤独的聪展完成签到,获得积分10
26秒前
27秒前
27秒前
李健的小迷弟应助Lisa田采纳,获得20
27秒前
27秒前
邓年念完成签到,获得积分10
30秒前
30秒前
Windsea完成签到,获得积分10
30秒前
李健应助苟文锋采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452