Extracting social determinants of health events with transformer-based multitask, multilabel named entity recognition

人工智能 计算机科学 变压器 机器学习 召回 F1得分 精确性和召回率 自然语言处理 健康的社会决定因素 政治学 心理学 医疗保健 认知心理学 工程类 电压 电气工程 法学
作者
Russell Richie,Vı́ctor Ruiz,Sifei Han,Lingyun Shi,Fuchiang Tsui
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (8): 1379-1388 被引量:4
标识
DOI:10.1093/jamia/ocad046
摘要

Abstract Objective Social determinants of health (SDOH) are nonclinical, socioeconomic conditions that influence patient health and quality of life. Identifying SDOH may help clinicians target interventions. However, SDOH are more frequently available in narrative notes compared to structured electronic health records. The 2022 n2c2 Track 2 competition released clinical notes annotated for SDOH to promote development of NLP systems for extracting SDOH. We developed a system addressing 3 limitations in state-of-the-art SDOH extraction: the inability to identify multiple SDOH events of the same type per sentence, overlapping SDOH attributes within text spans, and SDOH spanning multiple sentences. Materials and Methods We developed and evaluated a 2-stage architecture. In stage 1, we trained a BioClinical-BERT-based named entity recognition system to extract SDOH event triggers, that is, text spans indicating substance use, employment, or living status. In stage 2, we trained a multitask, multilabel NER to extract arguments (eg, alcohol “type”) for events extracted in stage 1. Evaluation was performed across 3 subtasks differing by provenance of training and validation data using precision, recall, and F1 scores. Results When trained and validated on data from the same site, we achieved 0.87 precision, 0.89 recall, and 0.88 F1. Across all subtasks, we ranked between second and fourth place in the competition and always within 0.02 F1 from first. Conclusions Our 2-stage, deep-learning-based NLP system effectively extracted SDOH events from clinical notes. This was achieved with a novel classification framework that leveraged simpler architectures compared to state-of-the-art systems. Improved SDOH extraction may help clinicians improve health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自然篮球完成签到,获得积分10
刚刚
张张张完成签到 ,获得积分10
1秒前
1秒前
昵称给昵称的求助进行了留言
1秒前
潘榆发布了新的文献求助10
3秒前
魔幻高烽发布了新的文献求助10
4秒前
4秒前
炸鸡完成签到 ,获得积分10
4秒前
caihong完成签到 ,获得积分10
5秒前
sunshine发布了新的文献求助10
5秒前
byelue发布了新的文献求助30
5秒前
breath完成签到,获得积分10
6秒前
机灵夜云完成签到,获得积分10
7秒前
mini昕完成签到,获得积分10
7秒前
kangkang完成签到,获得积分10
9秒前
量子力学完成签到,获得积分10
9秒前
9秒前
honghong完成签到,获得积分20
9秒前
10秒前
顾矜应助wangayting采纳,获得30
13秒前
14秒前
LeoYiS214完成签到,获得积分10
14秒前
整齐泥猴桃完成签到 ,获得积分10
14秒前
小高同学发布了新的文献求助10
15秒前
来了来了发布了新的文献求助10
15秒前
Akim应助殷志远采纳,获得10
15秒前
16秒前
16秒前
赘婿应助自然篮球采纳,获得10
17秒前
共享精神应助小高同学采纳,获得10
17秒前
温暖白梦发布了新的文献求助10
19秒前
加减乘除完成签到,获得积分10
21秒前
Elena发布了新的文献求助10
22秒前
22秒前
大个应助紫云采纳,获得10
22秒前
23秒前
沿途有你完成签到,获得积分10
24秒前
24秒前
来了来了完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137206
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785188
捐赠科研通 2444219
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601011