亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extracting social determinants of health events with transformer-based multitask, multilabel named entity recognition

人工智能 计算机科学 变压器 机器学习 召回 F1得分 精确性和召回率 自然语言处理 健康的社会决定因素 政治学 心理学 医疗保健 认知心理学 工程类 电压 电气工程 法学
作者
Russell Richie,Vı́ctor Ruiz,Sifei Han,Lingyun Shi,Fuchiang Tsui
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (8): 1379-1388 被引量:4
标识
DOI:10.1093/jamia/ocad046
摘要

Abstract Objective Social determinants of health (SDOH) are nonclinical, socioeconomic conditions that influence patient health and quality of life. Identifying SDOH may help clinicians target interventions. However, SDOH are more frequently available in narrative notes compared to structured electronic health records. The 2022 n2c2 Track 2 competition released clinical notes annotated for SDOH to promote development of NLP systems for extracting SDOH. We developed a system addressing 3 limitations in state-of-the-art SDOH extraction: the inability to identify multiple SDOH events of the same type per sentence, overlapping SDOH attributes within text spans, and SDOH spanning multiple sentences. Materials and Methods We developed and evaluated a 2-stage architecture. In stage 1, we trained a BioClinical-BERT-based named entity recognition system to extract SDOH event triggers, that is, text spans indicating substance use, employment, or living status. In stage 2, we trained a multitask, multilabel NER to extract arguments (eg, alcohol “type”) for events extracted in stage 1. Evaluation was performed across 3 subtasks differing by provenance of training and validation data using precision, recall, and F1 scores. Results When trained and validated on data from the same site, we achieved 0.87 precision, 0.89 recall, and 0.88 F1. Across all subtasks, we ranked between second and fourth place in the competition and always within 0.02 F1 from first. Conclusions Our 2-stage, deep-learning-based NLP system effectively extracted SDOH events from clinical notes. This was achieved with a novel classification framework that leveraged simpler architectures compared to state-of-the-art systems. Improved SDOH extraction may help clinicians improve health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SCINEXUS完成签到,获得积分0
3秒前
6秒前
哈哈完成签到,获得积分10
11秒前
Doki完成签到,获得积分20
12秒前
充电宝应助Ricky_Ao采纳,获得10
15秒前
ceeray23发布了新的文献求助20
16秒前
汉堡包应助科研通管家采纳,获得10
18秒前
18秒前
嘻嘻哈哈应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
23秒前
骆西西完成签到 ,获得积分10
37秒前
42秒前
347u完成签到 ,获得积分10
45秒前
48秒前
明理代荷发布了新的文献求助30
53秒前
忧郁小鸽子完成签到,获得积分10
1分钟前
笼中鸟完成签到,获得积分10
1分钟前
1分钟前
大模型应助红娘采纳,获得10
1分钟前
1分钟前
毛果芸香碱完成签到 ,获得积分10
1分钟前
七色光完成签到,获得积分10
1分钟前
天天快乐应助能用就行采纳,获得10
1分钟前
明理代荷完成签到,获得积分10
1分钟前
Lucas应助Jackson采纳,获得10
1分钟前
lll驳回了888应助
1分钟前
1分钟前
贱小贱完成签到,获得积分10
1分钟前
1分钟前
shentaii完成签到,获得积分10
1分钟前
在水一方应助夏侯德东采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
ho应助科研通管家采纳,获得20
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376254
求助须知:如何正确求助?哪些是违规求助? 4501333
关于积分的说明 14012802
捐赠科研通 4409093
什么是DOI,文献DOI怎么找? 2422059
邀请新用户注册赠送积分活动 1414807
关于科研通互助平台的介绍 1391686