Extracting social determinants of health events with transformer-based multitask, multilabel named entity recognition

人工智能 计算机科学 变压器 机器学习 召回 F1得分 精确性和召回率 自然语言处理 健康的社会决定因素 政治学 心理学 医疗保健 认知心理学 工程类 电压 电气工程 法学
作者
Russell Richie,Vı́ctor Ruiz,Sifei Han,Lingyun Shi,Fuchiang Tsui
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (8): 1379-1388 被引量:4
标识
DOI:10.1093/jamia/ocad046
摘要

Abstract Objective Social determinants of health (SDOH) are nonclinical, socioeconomic conditions that influence patient health and quality of life. Identifying SDOH may help clinicians target interventions. However, SDOH are more frequently available in narrative notes compared to structured electronic health records. The 2022 n2c2 Track 2 competition released clinical notes annotated for SDOH to promote development of NLP systems for extracting SDOH. We developed a system addressing 3 limitations in state-of-the-art SDOH extraction: the inability to identify multiple SDOH events of the same type per sentence, overlapping SDOH attributes within text spans, and SDOH spanning multiple sentences. Materials and Methods We developed and evaluated a 2-stage architecture. In stage 1, we trained a BioClinical-BERT-based named entity recognition system to extract SDOH event triggers, that is, text spans indicating substance use, employment, or living status. In stage 2, we trained a multitask, multilabel NER to extract arguments (eg, alcohol “type”) for events extracted in stage 1. Evaluation was performed across 3 subtasks differing by provenance of training and validation data using precision, recall, and F1 scores. Results When trained and validated on data from the same site, we achieved 0.87 precision, 0.89 recall, and 0.88 F1. Across all subtasks, we ranked between second and fourth place in the competition and always within 0.02 F1 from first. Conclusions Our 2-stage, deep-learning-based NLP system effectively extracted SDOH events from clinical notes. This was achieved with a novel classification framework that leveraged simpler architectures compared to state-of-the-art systems. Improved SDOH extraction may help clinicians improve health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助辛勤水蓝采纳,获得10
1秒前
1秒前
1秒前
刘萌萌发布了新的文献求助10
1秒前
goodjust完成签到 ,获得积分10
2秒前
ss发布了新的文献求助150
2秒前
量子星尘发布了新的文献求助10
3秒前
Orange应助孤独的砖头采纳,获得10
3秒前
书书发布了新的文献求助10
4秒前
玖歌发布了新的文献求助10
4秒前
高佳升发布了新的文献求助20
5秒前
jxz9510完成签到 ,获得积分10
5秒前
在路上完成签到,获得积分10
6秒前
Owen应助幸福的蓝血采纳,获得10
6秒前
mt1314完成签到 ,获得积分10
6秒前
Hello应助望海皆星辰采纳,获得10
6秒前
qian完成签到,获得积分10
6秒前
风趣的洙完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
sxy完成签到,获得积分20
7秒前
qin发布了新的文献求助10
7秒前
Komorebi完成签到,获得积分10
7秒前
zcz驳回了酷波er应助
7秒前
www发布了新的文献求助10
8秒前
8秒前
Jasper应助孤独的砖头采纳,获得10
8秒前
红柚发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
大意的乐菱完成签到,获得积分10
11秒前
爆米花应助伟伟采纳,获得10
11秒前
11秒前
11秒前
研究生end应助一路硕博采纳,获得50
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Spatial Econometrics: Spatial Autoregressive Models (World Scientific Series on Econometrics and Statistics Book 1) 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111177
求助须知:如何正确求助?哪些是违规求助? 4319430
关于积分的说明 13457835
捐赠科研通 4149833
什么是DOI,文献DOI怎么找? 2273805
邀请新用户注册赠送积分活动 1275926
关于科研通互助平台的介绍 1214145