清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Extracting social determinants of health events with transformer-based multitask, multilabel named entity recognition

人工智能 计算机科学 变压器 机器学习 召回 F1得分 精确性和召回率 自然语言处理 健康的社会决定因素 政治学 心理学 医疗保健 认知心理学 工程类 电压 电气工程 法学
作者
Russell Richie,Vı́ctor Ruiz,Sifei Han,Lingyun Shi,Fuchiang Tsui
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (8): 1379-1388 被引量:4
标识
DOI:10.1093/jamia/ocad046
摘要

Abstract Objective Social determinants of health (SDOH) are nonclinical, socioeconomic conditions that influence patient health and quality of life. Identifying SDOH may help clinicians target interventions. However, SDOH are more frequently available in narrative notes compared to structured electronic health records. The 2022 n2c2 Track 2 competition released clinical notes annotated for SDOH to promote development of NLP systems for extracting SDOH. We developed a system addressing 3 limitations in state-of-the-art SDOH extraction: the inability to identify multiple SDOH events of the same type per sentence, overlapping SDOH attributes within text spans, and SDOH spanning multiple sentences. Materials and Methods We developed and evaluated a 2-stage architecture. In stage 1, we trained a BioClinical-BERT-based named entity recognition system to extract SDOH event triggers, that is, text spans indicating substance use, employment, or living status. In stage 2, we trained a multitask, multilabel NER to extract arguments (eg, alcohol “type”) for events extracted in stage 1. Evaluation was performed across 3 subtasks differing by provenance of training and validation data using precision, recall, and F1 scores. Results When trained and validated on data from the same site, we achieved 0.87 precision, 0.89 recall, and 0.88 F1. Across all subtasks, we ranked between second and fourth place in the competition and always within 0.02 F1 from first. Conclusions Our 2-stage, deep-learning-based NLP system effectively extracted SDOH events from clinical notes. This was achieved with a novel classification framework that leveraged simpler architectures compared to state-of-the-art systems. Improved SDOH extraction may help clinicians improve health outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助yf采纳,获得10
18秒前
20秒前
方白秋完成签到,获得积分0
25秒前
研友_Z7gWlZ发布了新的文献求助10
25秒前
juan完成签到 ,获得积分0
33秒前
研友_Z7gWlZ完成签到,获得积分10
45秒前
生信小菜鸟完成签到 ,获得积分10
48秒前
NexusExplorer应助可可采纳,获得10
57秒前
sunialnd完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
可可完成签到,获得积分20
1分钟前
搞怪的白云完成签到 ,获得积分10
1分钟前
1分钟前
可可发布了新的文献求助10
1分钟前
KongXY完成签到 ,获得积分10
2分钟前
lanxinge完成签到 ,获得积分10
2分钟前
dream完成签到 ,获得积分10
2分钟前
星辰大海应助左白易采纳,获得10
3分钟前
3分钟前
3分钟前
kklkimo发布了新的文献求助10
3分钟前
左白易发布了新的文献求助10
3分钟前
善学以致用应助左白易采纳,获得10
3分钟前
大医仁心完成签到 ,获得积分10
4分钟前
kklkimo完成签到,获得积分10
4分钟前
菠萝包完成签到 ,获得积分10
4分钟前
zzr完成签到,获得积分20
4分钟前
zzr发布了新的文献求助10
4分钟前
nav完成签到 ,获得积分10
5分钟前
田様应助科研通管家采纳,获得10
5分钟前
5分钟前
lsh完成签到,获得积分10
6分钟前
小二郎应助默默南露采纳,获得10
6分钟前
7分钟前
8分钟前
迷茫的一代完成签到,获得积分10
9分钟前
9分钟前
9分钟前
浮游应助RIPCCCP采纳,获得10
10分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346897
求助须知:如何正确求助?哪些是违规求助? 4481285
关于积分的说明 13947546
捐赠科研通 4379319
什么是DOI,文献DOI怎么找? 2406300
邀请新用户注册赠送积分活动 1398883
关于科研通互助平台的介绍 1371769