Automatic detection and classification of land subsidence in deltaic metropolitan areas using distributed scatterer InSAR and Oriented R-CNN

干涉合成孔径雷达 遥感 下沉 数字高程模型 地质学 仰角(弹道) 土地覆盖 比例(比率) 合成孔径雷达 土地利用 地图学 地貌学 地理 构造盆地 土木工程 几何学 数学 工程类
作者
Zherong Wu,Peifeng Ma,Yi Zheng,Feng Long Gu,Lin Liu,Hui Lin
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:290: 113545-113545 被引量:34
标识
DOI:10.1016/j.rse.2023.113545
摘要

Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool for measuring large-scale land subsidence. However, the measurement points generated by InSAR are too many to be manually analyzed, and automatic subsidence detection and classification methods are still lacking. In this study, we developed an oriented R-CNN deep learning network to automatically detect and classify subsidence bowls using InSAR measurements and multi-source ancillary data. We used 541 Sentinel-1 images acquired during 2015–2021 to map land subsidence of the Guangdong-Hong Kong-Macao Greater Bay Area by resolving persistent and distributed scatterers. Multi-source data related to land subsidence, including geological and lithological, land cover, topographic, and climatic data, were incorporated into deep learning, allowing the local subsidence to be classified into seven categories. The results showed that the oriented R-CNN achieved an average precision (AP) of 0.847 for subsidence detection and a mean AP (mAP) of 0.798 for subsidence classification, which outperformed the other three state-of-the-art methods (Rotated RetinaNet, R3Det, and ReDet). An independent effect analysis showed that incorporating all datasets improved the AP by 11.2% for detection and the mAP by 73.9% for classification, respectively, compared with using InSAR measurements only. Combining InSAR measurements with globally available land cover and digital elevation model data improved the AP for subsidence detection to 0.822, suggesting that our methods can be potentially transferred to other regions, which was further validated this using a new dataset in Shanghai. These results improve the understanding of deltaic subsidence and facilitate geohazard assessment and management for sustainable environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
研友_xnExPL完成签到,获得积分10
2秒前
星辰大海应助li采纳,获得10
2秒前
FashionBoy应助anbiii采纳,获得10
3秒前
kuzzi完成签到,获得积分10
4秒前
大宝完成签到,获得积分10
5秒前
奋斗的猪发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
斯文败类应助青天如墨采纳,获得10
6秒前
Leo发布了新的文献求助10
6秒前
英俊的铭应助轩辕德地采纳,获得10
8秒前
9秒前
dty发布了新的文献求助10
10秒前
haha发布了新的文献求助30
10秒前
清风明月发布了新的文献求助10
11秒前
wsqg123完成签到,获得积分10
13秒前
mufcyang发布了新的文献求助10
14秒前
zuo发布了新的文献求助10
14秒前
15秒前
慈祥的百招完成签到,获得积分10
15秒前
16秒前
dty完成签到,获得积分10
17秒前
乐观的非笑发布了新的文献求助100
17秒前
儒雅儒雅完成签到 ,获得积分10
17秒前
17秒前
ShowMaker应助蒲sir采纳,获得30
18秒前
青天如墨发布了新的文献求助10
19秒前
小不溜完成签到,获得积分10
20秒前
乐乐应助Tal采纳,获得10
20秒前
阿文发布了新的文献求助20
21秒前
无花果应助曹焱兵采纳,获得10
21秒前
轩辕德地发布了新的文献求助10
21秒前
星际舟发布了新的文献求助100
23秒前
帅气糖豆完成签到 ,获得积分10
23秒前
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146297
求助须知:如何正确求助?哪些是违规求助? 2797687
关于积分的说明 7825144
捐赠科研通 2454059
什么是DOI,文献DOI怎么找? 1305990
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503