Automatic detection and classification of land subsidence in deltaic metropolitan areas using distributed scatterer InSAR and Oriented R-CNN

干涉合成孔径雷达 遥感 下沉 数字高程模型 地质学 仰角(弹道) 土地覆盖 比例(比率) 合成孔径雷达 土地利用 地图学 地貌学 地理 工程类 土木工程 构造盆地 数学 几何学
作者
Zherong Wu,Peifeng Ma,Yi Zheng,Feng Long Gu,Lin Liu,Hui Lin
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:290: 113545-113545 被引量:43
标识
DOI:10.1016/j.rse.2023.113545
摘要

Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool for measuring large-scale land subsidence. However, the measurement points generated by InSAR are too many to be manually analyzed, and automatic subsidence detection and classification methods are still lacking. In this study, we developed an oriented R-CNN deep learning network to automatically detect and classify subsidence bowls using InSAR measurements and multi-source ancillary data. We used 541 Sentinel-1 images acquired during 2015–2021 to map land subsidence of the Guangdong-Hong Kong-Macao Greater Bay Area by resolving persistent and distributed scatterers. Multi-source data related to land subsidence, including geological and lithological, land cover, topographic, and climatic data, were incorporated into deep learning, allowing the local subsidence to be classified into seven categories. The results showed that the oriented R-CNN achieved an average precision (AP) of 0.847 for subsidence detection and a mean AP (mAP) of 0.798 for subsidence classification, which outperformed the other three state-of-the-art methods (Rotated RetinaNet, R3Det, and ReDet). An independent effect analysis showed that incorporating all datasets improved the AP by 11.2% for detection and the mAP by 73.9% for classification, respectively, compared with using InSAR measurements only. Combining InSAR measurements with globally available land cover and digital elevation model data improved the AP for subsidence detection to 0.822, suggesting that our methods can be potentially transferred to other regions, which was further validated this using a new dataset in Shanghai. These results improve the understanding of deltaic subsidence and facilitate geohazard assessment and management for sustainable environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WFLLL发布了新的文献求助10
刚刚
煎bingo子完成签到,获得积分10
1秒前
Bmyndm完成签到 ,获得积分10
1秒前
无花果应助pine采纳,获得10
1秒前
1秒前
顺顺完成签到,获得积分10
2秒前
充电宝应助jcduoduo采纳,获得10
2秒前
2秒前
黑夜不黑夜呀完成签到,获得积分10
2秒前
kagami发布了新的文献求助10
3秒前
wenxiao发布了新的文献求助10
3秒前
4秒前
猪猪侠发布了新的文献求助10
4秒前
苦哈哈发布了新的文献求助10
5秒前
5秒前
烟花应助aganer采纳,获得10
5秒前
5秒前
6秒前
谢谢谢谢谢谢谢谢关注了科研通微信公众号
6秒前
REBACK发布了新的文献求助10
7秒前
陈陈发布了新的文献求助10
7秒前
邓力完成签到,获得积分10
7秒前
7秒前
Ava应助byq采纳,获得10
8秒前
shumin发布了新的文献求助10
8秒前
Jasper应助如风随水采纳,获得10
8秒前
9秒前
kk发布了新的文献求助10
9秒前
9秒前
10秒前
冷傲完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
橘子完成签到,获得积分10
12秒前
超男发布了新的文献求助10
12秒前
August完成签到,获得积分10
12秒前
周周发布了新的文献求助10
12秒前
12秒前
常紊发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059