Training Compact CNNs for Image Classification Using Dynamic-Coded Filter Fusion

计算机科学 滤波器(信号处理) 人工智能 上下文图像分类 模式识别(心理学) 算法 复合图像滤波器 数学 图像(数学) 计算机视觉
作者
Mingbao Lin,Bohong Chen,Fei Chao,Rongrong Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (8): 10478-10487 被引量:7
标识
DOI:10.1109/tpami.2023.3259402
摘要

The mainstream approach for filter pruning is usually either to force a hard-coded importance estimation upon a computation-heavy pretrained model to select "important" filters, or to impose a hyperparameter-sensitive sparse constraint on the loss objective to regularize the network training. In this paper, we present a novel filter pruning method, dubbed dynamic-coded filter fusion (DCFF), to derive compact CNNs in a computation-economical and regularization-free manner for efficient image classification. Each filter in our DCFF is first given an inter-similarity distribution with a temperature parameter as a filter proxy, on top of which, a fresh Kullback-Leibler divergence based dynamic-coded criterion is proposed to evaluate the filter importance. In contrast to simply keeping high-score filters in other methods, we propose the concept of filter fusion, i.e., the weighted averages using the assigned proxies, as our preserved filters. We obtain a one-hot inter-similarity distribution as the temperature parameter approaches infinity. Thus, the relative importance of each filter can vary along with the training of the compact CNN, leading to dynamically changeable fused filters without both the dependency on the pretrained model and the introduction of sparse constraints. Extensive experiments on classification benchmarks demonstrate the superiority of our DCFF over the compared counterparts. For example, our DCFF derives a compact VGGNet-16 with only 72.77M FLOPs and 1.06M parameters while reaching top-1 accuracy of 93.47% on CIFAR-10. A compact ResNet-50 is obtained with 63.8% FLOPs and 58.6% parameter reductions, retaining 75.60% top-1 accuracy on ILSVRC-2012. Our code, narrower models and training logs are available at https://github.com/lmbxmu/DCFF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈补天发布了新的文献求助10
2秒前
3秒前
5秒前
6秒前
zhumengyu发布了新的文献求助10
8秒前
嘎嘎嘎发布了新的文献求助10
9秒前
12秒前
ty完成签到,获得积分10
13秒前
PWG发布了新的文献求助10
14秒前
丘比特应助Xide采纳,获得10
15秒前
科研通AI2S应助zorro3574采纳,获得10
15秒前
英俊的铭应助魔幻熊猫采纳,获得10
15秒前
16秒前
16秒前
zhumengyu完成签到,获得积分10
17秒前
唐文硕发布了新的文献求助20
20秒前
柿子霖完成签到 ,获得积分10
20秒前
眯眯眼的山柳完成签到 ,获得积分10
21秒前
22秒前
科研通AI2S应助瞿寒采纳,获得30
22秒前
23秒前
Owen应助不喝奶茶采纳,获得10
24秒前
26秒前
26秒前
烂漫的豆芽完成签到,获得积分10
26秒前
桐桐应助自觉的以寒采纳,获得10
26秒前
舒适静丹发布了新的文献求助10
27秒前
如意的代桃完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
29秒前
魔幻熊猫发布了新的文献求助10
31秒前
8R60d8应助小吴小吴小吴采纳,获得10
32秒前
科研通AI2S应助zorro3574采纳,获得10
33秒前
jade发布了新的文献求助10
34秒前
文静的大象完成签到 ,获得积分10
35秒前
丘比特应助舒适静丹采纳,获得10
35秒前
大个应助Maqian采纳,获得10
35秒前
Orange应助南江悍匪采纳,获得10
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240