烟气
格式化
铋
催化作用
法拉第效率
无机化学
氧气
材料科学
吸附
氧化物
电化学
化学
化学工程
有机化学
电极
物理化学
工程类
作者
Fangqi Yang,Caihong Liang,Weizhen Zhou,Wendi Zhao,Pengfei Li,Zhengyu Hua,Haoming Yu,Shixia Chen,Shuguang Deng,Jing Li,Yeng Ming Lam,Jun Wang
出处
期刊:Small
[Wiley]
日期:2023-04-07
卷期号:19 (30): e2300417-e2300417
被引量:28
标识
DOI:10.1002/smll.202300417
摘要
Abstract Post‐combustion flue gas (mainly containing 5–40% CO 2 balanced by N 2 ) accounts for about 60% global CO 2 emission. Rational conversion of flue gas into value‐added chemicals is still a formidable challenge. Herein, this work reports a β‐Bi 2 O 3 ‐derived bismuth (OD‐Bi) catalyst with surface coordinated oxygen for efficient electroreduction of pure CO 2 , N 2, and flue gas. During pure CO 2 electroreduction, the maximum Faradaic efficiency (FE) of formate reaches 98.0% and stays above 90% in a broad potential of 600 mV with a long‐term stability of 50 h. Additionally, OD‐Bi achieves an ammonia (NH 3 ) FE of 18.53% and yield rate of 11.5 µg h −1 mg cat −1 in pure N 2 atmosphere. Noticeably, in simulated flue gas (15% CO 2 balanced by N 2 with trace impurities), a maximum formate FE of 97.3% is delivered within a flow cell, meanwhile above 90% formate FEs are obtained in a wide potential range of 700 mV. In‐situ Raman combined with theory calculations reveals that the surface coordinated oxygen species in OD‐Bi can drastically activate CO 2 and N 2 molecules by selectively favors the adsorption of *OCHO and *NNH intermediates, respectively. This work provides a surface oxygen modulation strategy to develop efficient bismuth‐based electrocatalysts for directly reducing commercially relevant flue gas into valuable chemicals.
科研通智能强力驱动
Strongly Powered by AbleSci AI