Deep learning-based rapid macrophage cell detection and localization in high-content microscopy screening

深度学习 人工智能 计算机科学 高含量筛选 分割 仿形(计算机编程) 目标检测 工作流程 细胞 混合模型 模式识别(心理学) 生物 遗传学 数据库 操作系统
作者
Kristen Ong,Xiao Cai,Vasant R. Marur,Veronica Soloveva,Uwe Mueller,Antong Chen
标识
DOI:10.1117/12.2654312
摘要

High-content screening (HCS) has catalyzed drug development through enabling fast, large-scale, and reproducible testing of changes in cellular invitro models in response to different types of perturbations. One HCS approach, known as Cell Painting (CP), can conduct the morphological profiling of images containing cells perturbed with different treatments to quantitatively assess complex biological changes. Profiling stages of macrophage polarization, in particular, enables new drug discovery with disease-relevant conditions. To analyze cell images at single cell level, deep learning algorithms - in addition to classical image segmentation methods - may also be used to conduct single cell cropping for accurate and fast detection of individual cells. While the classical Watershed Segmentation and Gaussian mixture model (GMM) was first implemented for robust single-cell detection in the CP workflow, its performance is sometimes compromised when cells are clumped. A deep learning-based cell segmentation method called Cellpose was introduced and proposed as an alternative means for cell localization, however, coming at the cost of compromised runtime for HCS. In this study, we demonstrate the use of YOLOv5, a fast deep learning object detection algorithm, to yield comparable cell detection performance to the other two methods, while bringing improvements in high cell density regions and a faster runtime. This study demonstrates the use of the YOLOv5 model for performing ~2x faster cell detection with comparable IoU scores on HCS macrophage nuclei images, demonstrating its value in extracting coordinates for single-cell cropping needed in deep learning-based phenotypic profiling in HCS. We compare the accuracy and speed of the model developed using YOLOv5 with those of the current Watershed/GMM method and Cellpose method in macrophage cell detection in the context of investigating drug activity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yqf完成签到,获得积分10
1秒前
wxyinhefeng完成签到 ,获得积分10
1秒前
1111完成签到 ,获得积分10
1秒前
4秒前
yoowt完成签到,获得积分10
5秒前
6秒前
7秒前
Joshua完成签到 ,获得积分10
7秒前
记忆完成签到,获得积分10
7秒前
搜集达人应助火星上冬日采纳,获得10
8秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
行走家应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助shoplog采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
劲秉应助科研通管家采纳,获得10
11秒前
苹果易真完成签到,获得积分10
11秒前
Singularity应助科研通管家采纳,获得10
11秒前
11秒前
劲秉应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
华仔应助平常的子默采纳,获得10
11秒前
11秒前
Akim应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671735
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9779943
捐赠科研通 2938695
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760602
科研通“疑难数据库(出版商)”最低求助积分说明 736096