Cross-Scale Mixing Attention for Multisource Remote Sensing Data Fusion and Classification

计算机科学 高光谱成像 多光谱图像 传感器融合 人工智能 遥感 模式识别(心理学) 卷积神经网络 比例(比率) 融合 特征(语言学) 分割 特征提取 数据挖掘 地理 语言学 哲学 地图学
作者
Yunhao Gao,Mengmeng Zhang,Junjie Wang,Wei Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:29
标识
DOI:10.1109/tgrs.2023.3263362
摘要

Hyperspectral and multispectral images (HS/MS) fusion and classification as an important branch of data quality improvement and interpretation, has attracted increasing attention in recent years. However, the unavailable sensor prior still limits the performance of many traditional fusion methods, consequently deteriorating the classification results. Despite the unsupervised methods based on convolutional neural network (CNN) making a lot of attempts to mitigate the limitations, challenges with extracting the long-range dependencies hamper the performance. To address these impediments, a transformer-based baseline constructed by the cross-scale mixing attention (CSMFormer) is designed for HS/MS fusion and classification. Especially, the spatial-spectral mixer (SSMixer) is utilized to extract the long-range dependencies at large scale. Simultaneously, cross-scale feature calibration is achieved by combining information from the original scale. After that, nonlinear enhancement module (NLEM) is designed to encourage feature discrimination. Note that the spatial and spectral mixers can be replaced by any spatial-spectral feature extractors. Therefore, the proposed CSMFormer is flexible in data fusion, land-covers classification, segmentation, etc. Experiments about data fusion and land-covers classification on two HS/MS wetland remote sensing scenes demonstrate the superiority of the proposed CSMFormer baseline, improving the data quality and classification precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
旺旺碎发布了新的文献求助10
1秒前
5秒前
WittingGU完成签到,获得积分0
7秒前
魔山西红柿完成签到,获得积分10
9秒前
9秒前
10秒前
xide发布了新的文献求助10
10秒前
汉堡包应助佳丽采纳,获得10
11秒前
躺平摆烂小饼干完成签到,获得积分10
12秒前
共享精神应助追寻笑寒采纳,获得30
13秒前
14秒前
科研通AI2S应助volvoamg采纳,获得10
14秒前
14秒前
15秒前
16秒前
18秒前
19秒前
zzyl完成签到,获得积分10
21秒前
...完成签到,获得积分10
22秒前
22秒前
okjiujiu完成签到,获得积分0
22秒前
大火炉发布了新的文献求助10
23秒前
Jarvis完成签到,获得积分10
23秒前
23秒前
真1发布了新的文献求助10
24秒前
大模型应助快乐的安珊采纳,获得10
24秒前
26秒前
搜集达人应助蘇q采纳,获得10
26秒前
27秒前
27秒前
Hello应助啊唔采纳,获得10
28秒前
28秒前
pengchen完成签到,获得积分10
28秒前
29秒前
科研菜鸟完成签到,获得积分10
29秒前
斯文问丝完成签到 ,获得积分10
30秒前
万能图书馆应助左辄采纳,获得10
30秒前
WMT完成签到 ,获得积分10
32秒前
czz发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812642
关于积分的说明 7895839
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316030
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112