清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for Highly Accurate Protein–Ligand Binding Affinity Prediction

计算机科学 卷积神经网络 人工智能 深度学习 试验装置 Python(编程语言) 概化理论 机器学习 水准点(测量) 图形 虚拟筛选 数据挖掘 模式识别(心理学) 药物发现 理论计算机科学 生物信息学 统计 数学 大地测量学 生物 地理 操作系统
作者
Gregory W. Kyro,Rafael I. Brent,Víctor S. Batista
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (7): 1947-1960 被引量:36
标识
DOI:10.1021/acs.jcim.3c00251
摘要

Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints of complexes in the training and test sets. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/, and the HACNet Python package is available through PyPI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑面客发布了新的文献求助10
4秒前
科研通AI5应助yw采纳,获得30
15秒前
鲤鱼越越完成签到 ,获得积分10
23秒前
默默无闻完成签到,获得积分10
28秒前
46秒前
drhwang完成签到,获得积分10
59秒前
1分钟前
yw发布了新的文献求助30
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
zhdjj完成签到 ,获得积分10
1分钟前
violetlishu完成签到 ,获得积分10
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
www完成签到 ,获得积分10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
醋溜荧光大蒜完成签到 ,获得积分10
2分钟前
Xu完成签到,获得积分10
2分钟前
欣欣完成签到,获得积分10
2分钟前
小蘑菇应助mia采纳,获得10
2分钟前
科目三应助lanxinge采纳,获得10
2分钟前
Barid完成签到,获得积分10
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
zhanlang完成签到 ,获得积分10
3分钟前
谨慎的元冬完成签到 ,获得积分10
3分钟前
爱上阳光的鱼完成签到 ,获得积分10
3分钟前
牙瓜完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
大个应助科研通管家采纳,获得10
3分钟前
3分钟前
mia发布了新的文献求助10
3分钟前
4分钟前
4分钟前
lanxinge发布了新的文献求助10
4分钟前
大模型应助lanxinge采纳,获得10
4分钟前
ldjldj_2004完成签到 ,获得积分10
4分钟前
sysi完成签到 ,获得积分10
4分钟前
WenJun完成签到,获得积分10
4分钟前
Sunny完成签到,获得积分10
5分钟前
缥缈完成签到 ,获得积分10
5分钟前
5分钟前
lanxinge发布了新的文献求助10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746201
求助须知:如何正确求助?哪些是违规求助? 3289015
关于积分的说明 10061744
捐赠科研通 3005280
什么是DOI,文献DOI怎么找? 1650186
邀请新用户注册赠送积分活动 785753
科研通“疑难数据库(出版商)”最低求助积分说明 751258