材料科学
三元运算
接受者
有机太阳能电池
小分子
带隙
分子
光伏系统
光电子学
合金
聚合物
化学
有机化学
复合材料
物理
程序设计语言
生态学
生物
生物化学
计算机科学
凝聚态物理
作者
Yuan Gao,Xinrong Yang,Wei Wang,Rui Sun,Jiting Cui,Yúang Fu,Kai Li,Meimei Zhang,Chao Liu,Haiming Zhu,Xinhui Lu,Jie Min
标识
DOI:10.1002/adma.202300531
摘要
Abstract Using a combinatory blending strategy is demonstrated as a promising path for designing efficient organic solar cells (OSCs) by boosting the short‐circuit current density and fill factor. Herein, a high‐performance ternary all‐small molecule OSC (all‐SMOSCs) using a narrow‐bandgap alloy acceptor containing symmetric and asymmetric molecules (BTP‐eC9 and SSe‐NIC) and a wide‐bandgap small molecule donor MPhS‐C2 is reported. Introducing the synthesized SSe‐NIC into the MPhS‐C2:BTP‐eC9 host system can broaden the absorption spectrum, modulate energy offsets, and optimize the molecular packing of the host materials. After systematically optimizing the weight ratio of MPhS‐C2:BTP‐eC9:SSe‐NIC, a champion efficiency of 18.02% is achieved. Impressively, the ternary system not only delivered a broad composition tolerance with device efficiencies over 17% throughout the whole blend ratios, but also exhibited less non‐geminate recombination and energy loss, and better‐light‐soaking stability than the corresponding binary systems. This work promotes the development of high‐performance ternary all‐SMOSCs and heralds their brighter application prospects.
科研通智能强力驱动
Strongly Powered by AbleSci AI