Joint Optimization of Order Allocation and Rack Selection in the “Parts-to-Picker” Picking System Considering Multiple Stations Workload Balance

机架 工作量 拣选订单 解算器 数学优化 模拟退火 选择(遗传算法) 计算机科学 接头(建筑物) 整数规划 工程类 算法 数学 人工智能 机械工程 操作系统 业务 营销 建筑工程 仓库
作者
Wang Fang,Stefan Ruzika,Daofang Chang
出处
期刊:Systems [MDPI AG]
卷期号:11 (4): 179-179
标识
DOI:10.3390/systems11040179
摘要

E-commerce companies generate massive orders daily, and efficiently fulfilling them is a critical challenge. In the “parts-to-picker” order fulfillment system, the joint optimization of order allocation and rack selection is a crucial problem. Previous research has primarily focused on these two aspects separately and has yet to consider the issue of workload balancing across multiple picking stations, which can significantly impact picking efficiency. Therefore, this paper studies a joint optimization problem of order allocation and rack selection for a “parts-to-picker” order picking system with multiple picking stations to improve order picking efficiency and avoid uneven workload distribution. An integer programming model of order allocation and rack selection joint optimization is formulated to minimize the racks’ total moving distance and to balance the orders allocated to each picking station. The problem is decomposed into three sub-problems: order batching, batch allocation, and rack selection, and an improved simulated annealing (SA) algorithm is designed to solve the problem. Two workload comparing operators and two random operators are developed and introduced to the SA iterations. Random instances of different scales are generated for experiments. The algorithm solutions are compared with those generated by solving the IP model directly in a commercial solver, CPLEX, and applying the first-come-first-serve strategy (FCFS), respectively. The numerical results show that the proposed algorithm can generate order allocation and rack selection solutions much more efficiently, where the moving distances of the racks are effectively reduced and the workloads are balanced among the picking stations simultaneously. The model and algorithm proposed in this paper can provide a scientific decision-making basis for e-commerce companies to improve their picking efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助武穆杰采纳,获得10
1秒前
深情安青应助武穆杰采纳,获得10
1秒前
脑洞疼应助武穆杰采纳,获得10
1秒前
难过的谷芹应助武穆杰采纳,获得10
1秒前
科研通AI2S应助武穆杰采纳,获得30
1秒前
4秒前
bubuyier完成签到 ,获得积分10
9秒前
ESC惠子子子子子完成签到 ,获得积分10
11秒前
崔康佳完成签到,获得积分10
12秒前
陈秋完成签到,获得积分10
14秒前
超帅的又槐完成签到,获得积分10
15秒前
hi_traffic完成签到,获得积分10
15秒前
青春完成签到,获得积分10
19秒前
19秒前
shyxia完成签到 ,获得积分10
21秒前
Yy完成签到 ,获得积分10
23秒前
Vanni发布了新的文献求助30
24秒前
qianci2009完成签到,获得积分10
25秒前
27秒前
殷勤的凝海完成签到 ,获得积分10
34秒前
好好完成签到,获得积分10
35秒前
35秒前
灰鸽舞完成签到 ,获得积分10
36秒前
mss12138完成签到 ,获得积分10
38秒前
1205114938发布了新的文献求助10
38秒前
39秒前
kelien1205完成签到 ,获得积分10
40秒前
稳重母鸡完成签到 ,获得积分10
40秒前
xqh完成签到,获得积分10
41秒前
tigger完成签到 ,获得积分10
47秒前
桢桢树完成签到 ,获得积分10
49秒前
凶狠的白桃完成签到 ,获得积分10
54秒前
年轻千愁完成签到 ,获得积分10
54秒前
55秒前
和谐的果汁完成签到 ,获得积分10
56秒前
杜科研发布了新的文献求助10
1分钟前
爱吃无核瓜子完成签到,获得积分10
1分钟前
蛋卷完成签到 ,获得积分10
1分钟前
胖胖完成签到 ,获得积分0
1分钟前
我本人lrx完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315200
求助须知:如何正确求助?哪些是违规求助? 4457851
关于积分的说明 13868384
捐赠科研通 4347405
什么是DOI,文献DOI怎么找? 2387759
邀请新用户注册赠送积分活动 1381862
关于科研通互助平台的介绍 1351115