Joint Optimization of Order Allocation and Rack Selection in the “Parts-to-Picker” Picking System Considering Multiple Stations Workload Balance

机架 工作量 拣选订单 解算器 数学优化 模拟退火 选择(遗传算法) 计算机科学 接头(建筑物) 整数规划 工程类 算法 数学 人工智能 机械工程 营销 仓库 业务 操作系统 建筑工程
作者
Wang Fang,Stefan Ruzika,Daofang Chang
出处
期刊:Systems [MDPI AG]
卷期号:11 (4): 179-179
标识
DOI:10.3390/systems11040179
摘要

E-commerce companies generate massive orders daily, and efficiently fulfilling them is a critical challenge. In the “parts-to-picker” order fulfillment system, the joint optimization of order allocation and rack selection is a crucial problem. Previous research has primarily focused on these two aspects separately and has yet to consider the issue of workload balancing across multiple picking stations, which can significantly impact picking efficiency. Therefore, this paper studies a joint optimization problem of order allocation and rack selection for a “parts-to-picker” order picking system with multiple picking stations to improve order picking efficiency and avoid uneven workload distribution. An integer programming model of order allocation and rack selection joint optimization is formulated to minimize the racks’ total moving distance and to balance the orders allocated to each picking station. The problem is decomposed into three sub-problems: order batching, batch allocation, and rack selection, and an improved simulated annealing (SA) algorithm is designed to solve the problem. Two workload comparing operators and two random operators are developed and introduced to the SA iterations. Random instances of different scales are generated for experiments. The algorithm solutions are compared with those generated by solving the IP model directly in a commercial solver, CPLEX, and applying the first-come-first-serve strategy (FCFS), respectively. The numerical results show that the proposed algorithm can generate order allocation and rack selection solutions much more efficiently, where the moving distances of the racks are effectively reduced and the workloads are balanced among the picking stations simultaneously. The model and algorithm proposed in this paper can provide a scientific decision-making basis for e-commerce companies to improve their picking efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sxy发布了新的文献求助10
1秒前
壮观以松完成签到,获得积分10
2秒前
科研牛人完成签到,获得积分10
2秒前
3秒前
3秒前
Zel博博完成签到,获得积分10
3秒前
3秒前
xiaoD完成签到 ,获得积分10
3秒前
太阳花发布了新的文献求助10
4秒前
谨慎采白完成签到 ,获得积分10
4秒前
syr完成签到,获得积分10
5秒前
李三今完成签到,获得积分10
5秒前
芳芳完成签到,获得积分10
5秒前
5秒前
清爽念柏完成签到 ,获得积分10
5秒前
Er魁发布了新的文献求助10
6秒前
6秒前
6秒前
neil完成签到,获得积分10
6秒前
e麓绝尘完成签到 ,获得积分10
7秒前
7秒前
沐夕完成签到,获得积分10
7秒前
傻芙芙的完成签到,获得积分10
7秒前
8秒前
大猪头完成签到,获得积分20
8秒前
fbwg完成签到,获得积分10
8秒前
kk完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
fjhsg25发布了新的文献求助10
9秒前
留胡子的寄瑶完成签到,获得积分10
9秒前
小杨关注了科研通微信公众号
9秒前
李雪完成签到,获得积分10
9秒前
10秒前
吴所谓完成签到,获得积分10
10秒前
华仔应助自信胡萝卜采纳,获得10
10秒前
科研通AI6应助坦率凌寒采纳,获得10
10秒前
11秒前
11秒前
雅雅完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664967
求助须知:如何正确求助?哪些是违规求助? 4873787
关于积分的说明 15110464
捐赠科研通 4824067
什么是DOI,文献DOI怎么找? 2582622
邀请新用户注册赠送积分活动 1536541
关于科研通互助平台的介绍 1495147