Joint Optimization of Order Allocation and Rack Selection in the “Parts-to-Picker” Picking System Considering Multiple Stations Workload Balance

机架 工作量 拣选订单 解算器 数学优化 模拟退火 选择(遗传算法) 计算机科学 接头(建筑物) 整数规划 工程类 算法 数学 人工智能 机械工程 营销 仓库 业务 操作系统 建筑工程
作者
Wang Fang,Stefan Ruzika,Daofang Chang
出处
期刊:Systems [MDPI AG]
卷期号:11 (4): 179-179
标识
DOI:10.3390/systems11040179
摘要

E-commerce companies generate massive orders daily, and efficiently fulfilling them is a critical challenge. In the “parts-to-picker” order fulfillment system, the joint optimization of order allocation and rack selection is a crucial problem. Previous research has primarily focused on these two aspects separately and has yet to consider the issue of workload balancing across multiple picking stations, which can significantly impact picking efficiency. Therefore, this paper studies a joint optimization problem of order allocation and rack selection for a “parts-to-picker” order picking system with multiple picking stations to improve order picking efficiency and avoid uneven workload distribution. An integer programming model of order allocation and rack selection joint optimization is formulated to minimize the racks’ total moving distance and to balance the orders allocated to each picking station. The problem is decomposed into three sub-problems: order batching, batch allocation, and rack selection, and an improved simulated annealing (SA) algorithm is designed to solve the problem. Two workload comparing operators and two random operators are developed and introduced to the SA iterations. Random instances of different scales are generated for experiments. The algorithm solutions are compared with those generated by solving the IP model directly in a commercial solver, CPLEX, and applying the first-come-first-serve strategy (FCFS), respectively. The numerical results show that the proposed algorithm can generate order allocation and rack selection solutions much more efficiently, where the moving distances of the racks are effectively reduced and the workloads are balanced among the picking stations simultaneously. The model and algorithm proposed in this paper can provide a scientific decision-making basis for e-commerce companies to improve their picking efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ricardo完成签到 ,获得积分10
3秒前
希望天下0贩的0应助devil采纳,获得10
3秒前
3秒前
Owen应助ubiqutin采纳,获得10
4秒前
油焖青椒发布了新的文献求助10
6秒前
李健应助TT采纳,获得10
6秒前
黎金鑫完成签到,获得积分10
8秒前
8秒前
yuchao_0110完成签到,获得积分10
9秒前
奶盐牙牙乐完成签到 ,获得积分10
10秒前
Santasy发布了新的文献求助10
10秒前
11秒前
呆呆发布了新的文献求助20
11秒前
舒适的平蓝完成签到 ,获得积分10
12秒前
科研通AI5应助Upupcc采纳,获得10
13秒前
13秒前
14秒前
Maestro_S应助英语教育在读采纳,获得10
14秒前
呼呼发布了新的文献求助10
15秒前
ubiqutin发布了新的文献求助10
16秒前
毛毛完成签到,获得积分10
16秒前
qiaobaqiao完成签到 ,获得积分10
16秒前
19秒前
Auto完成签到 ,获得积分10
20秒前
20秒前
悠悠小土豆完成签到,获得积分10
21秒前
22秒前
22秒前
susu发布了新的文献求助10
22秒前
周小浪完成签到,获得积分10
22秒前
徐徐发布了新的文献求助10
24秒前
Santasy完成签到,获得积分10
25秒前
科研通AI5应助诸笑白采纳,获得10
26秒前
沙青烟完成签到,获得积分10
26秒前
26秒前
qiqi发布了新的文献求助20
27秒前
27秒前
明理晓霜发布了新的文献求助10
27秒前
凝子老师发布了新的文献求助10
27秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849