Multiscale Kernel Entropy Component Analysis With Application to Complex Industrial Process Monitoring

计算机科学 故障检测与隔离 熵(时间箭头) 核(代数) 小波 数据挖掘 非线性系统 比例(比率) 公制(单位) 过程(计算) 组分(热力学) 核主成分分析 算法 人工智能 核方法 数学 工程类 支持向量机 物理 组合数学 操作系统 执行机构 热力学 量子力学 运营管理
作者
Peng Xu,Jianchang Liu,Wenle Zhang,Honghai Wang,Yukun Huang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3757-3772 被引量:2
标识
DOI:10.1109/tase.2023.3285217
摘要

Modern industrial processes are characterized by numerous measurement points and wide operating ranges, resulting in extremely complex correlations among variables. Therefore, an effective monitoring system should balance diverse process characteristics such as nonlinearity, non-Gaussianity, and multiscale simultaneously. Moreover, it should have the ability to detect and diagnose faults in the incipient stage, thus avoiding accident escalation. With these goals in mind, this paper proposes an integrated monitoring solution based on multiscale kernel entropy component analysis (MSKECA). Specifically, process variables are first decomposed into approximations and details at different scales in real-time using the moving window-based wavelet, and contributions from each scale are collected in separate matrices. Then, KECA-based local-scale models are built to sift out important detail scales for reconstruction along with the approximate scale. Lastly, a KECA-based global-scale model is developed to monitor the reconstructed data. To improve the fault detection performance, a novel monitoring index based on the angle metric called angle variance index (AVI) is designed. In addition, to achieve effective diagnosis, MSKECA-based contribution plots are constructed, which depict the contributions of variables to faults at each scale, thus comprehensively revealing the root causes. Finally, the effectiveness and superiority of the proposed solution are validated by comparisons with other advanced counterparts in two industrial scenarios. Note to Practitioners —This paper proposes an integrated monitoring solution for complex industrial processes, i.e., MSKECA-based fault detection and diagnosis. The solution takes into account the diversity of process characteristics, the effectiveness of incipient fault detection, and the richness of diagnostic information. Specifically, 1) MSKECA can simultaneously handle the nonlinear, non-Gaussian, and multiscale characteristics that are prevalent in real process data. It enables on-line detection of significant events occurring at different scales and extraction of fault-sensitive features for monitoring; 2) based on the angular structure of KECA, the AVI statistic is designed, which exhibits low autocorrelation and is sensitive to faults. Leveraging the statistic, MSKECA allows reliable and prompt responses to faults; 3) MSKECA-based contribution plots not only convey diverse diagnostic information including fault variable, type, and grade but also are not susceptible to the smearing effect, which is helpful for practitioners to achieve fault repair. The solution has proven useful for a real hot rolling process. It can also be extended to other industrial processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏雪无痕发布了新的文献求助10
刚刚
xiaohua发布了新的文献求助30
刚刚
刚刚
Allon完成签到,获得积分10
刚刚
wittig发布了新的文献求助10
1秒前
orixero应助myj采纳,获得10
1秒前
默默水之发布了新的文献求助10
2秒前
2秒前
帕尼灬尼发布了新的文献求助10
2秒前
CucRuotThua完成签到,获得积分10
3秒前
香蕉觅云应助热情铭采纳,获得10
3秒前
why完成签到,获得积分10
3秒前
3秒前
3秒前
03完成签到,获得积分10
4秒前
4秒前
小明完成签到,获得积分10
4秒前
HPP123完成签到,获得积分10
4秒前
4秒前
chenyunxia发布了新的文献求助10
5秒前
没写名字233完成签到 ,获得积分10
6秒前
6秒前
6秒前
孙刚发布了新的文献求助10
6秒前
ty发布了新的文献求助10
6秒前
xing525888完成签到,获得积分20
6秒前
十月完成签到 ,获得积分10
6秒前
桐桐应助blueming采纳,获得10
7秒前
7秒前
7秒前
wanci应助小怪兽采纳,获得10
8秒前
孙晓燕完成签到 ,获得积分10
9秒前
灰灰灰发布了新的文献求助10
10秒前
万能图书馆应助欢--采纳,获得10
10秒前
无私诗桃完成签到,获得积分10
10秒前
xing525888发布了新的文献求助10
10秒前
10秒前
wangjie发布了新的文献求助10
11秒前
64658应助聪慧冰淇淋采纳,获得10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635