清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multiscale Kernel Entropy Component Analysis With Application to Complex Industrial Process Monitoring

计算机科学 故障检测与隔离 熵(时间箭头) 核(代数) 小波 数据挖掘 非线性系统 比例(比率) 公制(单位) 过程(计算) 组分(热力学) 核主成分分析 算法 人工智能 核方法 数学 工程类 支持向量机 运营管理 物理 量子力学 组合数学 执行机构 热力学 操作系统
作者
Peng Xu,Jianchang Liu,Wenle Zhang,Honghai Wang,Yukun Huang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3757-3772 被引量:2
标识
DOI:10.1109/tase.2023.3285217
摘要

Modern industrial processes are characterized by numerous measurement points and wide operating ranges, resulting in extremely complex correlations among variables. Therefore, an effective monitoring system should balance diverse process characteristics such as nonlinearity, non-Gaussianity, and multiscale simultaneously. Moreover, it should have the ability to detect and diagnose faults in the incipient stage, thus avoiding accident escalation. With these goals in mind, this paper proposes an integrated monitoring solution based on multiscale kernel entropy component analysis (MSKECA). Specifically, process variables are first decomposed into approximations and details at different scales in real-time using the moving window-based wavelet, and contributions from each scale are collected in separate matrices. Then, KECA-based local-scale models are built to sift out important detail scales for reconstruction along with the approximate scale. Lastly, a KECA-based global-scale model is developed to monitor the reconstructed data. To improve the fault detection performance, a novel monitoring index based on the angle metric called angle variance index (AVI) is designed. In addition, to achieve effective diagnosis, MSKECA-based contribution plots are constructed, which depict the contributions of variables to faults at each scale, thus comprehensively revealing the root causes. Finally, the effectiveness and superiority of the proposed solution are validated by comparisons with other advanced counterparts in two industrial scenarios. Note to Practitioners —This paper proposes an integrated monitoring solution for complex industrial processes, i.e., MSKECA-based fault detection and diagnosis. The solution takes into account the diversity of process characteristics, the effectiveness of incipient fault detection, and the richness of diagnostic information. Specifically, 1) MSKECA can simultaneously handle the nonlinear, non-Gaussian, and multiscale characteristics that are prevalent in real process data. It enables on-line detection of significant events occurring at different scales and extraction of fault-sensitive features for monitoring; 2) based on the angular structure of KECA, the AVI statistic is designed, which exhibits low autocorrelation and is sensitive to faults. Leveraging the statistic, MSKECA allows reliable and prompt responses to faults; 3) MSKECA-based contribution plots not only convey diverse diagnostic information including fault variable, type, and grade but also are not susceptible to the smearing effect, which is helpful for practitioners to achieve fault repair. The solution has proven useful for a real hot rolling process. It can also be extended to other industrial processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
41秒前
Jessica发布了新的文献求助10
46秒前
53秒前
方白秋完成签到,获得积分0
1分钟前
迷茫的一代完成签到,获得积分10
1分钟前
crazy发布了新的文献求助10
1分钟前
1分钟前
狂野的含烟完成签到 ,获得积分10
1分钟前
1分钟前
yiburongci完成签到,获得积分20
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Lei完成签到,获得积分10
2分钟前
2分钟前
唐唐完成签到,获得积分10
2分钟前
3分钟前
WaWaQAQ发布了新的文献求助10
3分钟前
yiburongci关注了科研通微信公众号
3分钟前
WaWaQAQ完成签到,获得积分10
3分钟前
yiburongci发布了新的文献求助25
3分钟前
Gryff完成签到 ,获得积分10
3分钟前
萝卜猪完成签到,获得积分10
4分钟前
4分钟前
4分钟前
欢呼亦绿完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Jessica应助精明代灵采纳,获得10
4分钟前
大个应助安静的小蘑菇采纳,获得30
4分钟前
上官若男应助巫马百招采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
紫熊发布了新的文献求助10
5分钟前
巫马百招发布了新的文献求助10
5分钟前
巫马百招完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864433
关于积分的说明 15107930
捐赠科研通 4823164
什么是DOI,文献DOI怎么找? 2582020
邀请新用户注册赠送积分活动 1536109
关于科研通互助平台的介绍 1494538