Multiscale Kernel Entropy Component Analysis With Application to Complex Industrial Process Monitoring

计算机科学 故障检测与隔离 熵(时间箭头) 核(代数) 小波 数据挖掘 非线性系统 比例(比率) 公制(单位) 过程(计算) 组分(热力学) 核主成分分析 算法 人工智能 核方法 数学 工程类 支持向量机 运营管理 物理 量子力学 组合数学 执行机构 热力学 操作系统
作者
Peng Xu,Jianchang Liu,Wenle Zhang,Honghai Wang,Yukun Huang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3757-3772 被引量:2
标识
DOI:10.1109/tase.2023.3285217
摘要

Modern industrial processes are characterized by numerous measurement points and wide operating ranges, resulting in extremely complex correlations among variables. Therefore, an effective monitoring system should balance diverse process characteristics such as nonlinearity, non-Gaussianity, and multiscale simultaneously. Moreover, it should have the ability to detect and diagnose faults in the incipient stage, thus avoiding accident escalation. With these goals in mind, this paper proposes an integrated monitoring solution based on multiscale kernel entropy component analysis (MSKECA). Specifically, process variables are first decomposed into approximations and details at different scales in real-time using the moving window-based wavelet, and contributions from each scale are collected in separate matrices. Then, KECA-based local-scale models are built to sift out important detail scales for reconstruction along with the approximate scale. Lastly, a KECA-based global-scale model is developed to monitor the reconstructed data. To improve the fault detection performance, a novel monitoring index based on the angle metric called angle variance index (AVI) is designed. In addition, to achieve effective diagnosis, MSKECA-based contribution plots are constructed, which depict the contributions of variables to faults at each scale, thus comprehensively revealing the root causes. Finally, the effectiveness and superiority of the proposed solution are validated by comparisons with other advanced counterparts in two industrial scenarios. Note to Practitioners —This paper proposes an integrated monitoring solution for complex industrial processes, i.e., MSKECA-based fault detection and diagnosis. The solution takes into account the diversity of process characteristics, the effectiveness of incipient fault detection, and the richness of diagnostic information. Specifically, 1) MSKECA can simultaneously handle the nonlinear, non-Gaussian, and multiscale characteristics that are prevalent in real process data. It enables on-line detection of significant events occurring at different scales and extraction of fault-sensitive features for monitoring; 2) based on the angular structure of KECA, the AVI statistic is designed, which exhibits low autocorrelation and is sensitive to faults. Leveraging the statistic, MSKECA allows reliable and prompt responses to faults; 3) MSKECA-based contribution plots not only convey diverse diagnostic information including fault variable, type, and grade but also are not susceptible to the smearing effect, which is helpful for practitioners to achieve fault repair. The solution has proven useful for a real hot rolling process. It can also be extended to other industrial processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sivan完成签到,获得积分10
1秒前
1秒前
炙热巧曼完成签到 ,获得积分10
1秒前
2秒前
2秒前
暴富完成签到,获得积分10
4秒前
上官若男应助王粒采纳,获得10
4秒前
5秒前
6秒前
6秒前
Pwrry发布了新的文献求助10
7秒前
8秒前
深情安青应助Air采纳,获得10
8秒前
xiaou完成签到,获得积分10
8秒前
乐乐应助研友_5Zl9D8采纳,获得10
8秒前
在水一方应助Teresa采纳,获得10
9秒前
9秒前
9秒前
猫多鱼发布了新的文献求助200
10秒前
啷哩个尔浪完成签到,获得积分10
10秒前
11秒前
jiangmj1990发布了新的文献求助10
12秒前
12秒前
hoibuoifv发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
FashionBoy应助hhhhhhh采纳,获得10
13秒前
自然的听南完成签到,获得积分10
14秒前
14秒前
WendyWen发布了新的文献求助30
16秒前
或无情发布了新的文献求助10
16秒前
16秒前
纯真的德地完成签到,获得积分10
17秒前
王粒发布了新的文献求助10
17秒前
三木发布了新的文献求助10
17秒前
Mizoresuki应助huaiting采纳,获得10
17秒前
hu完成签到,获得积分10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197