Highly automatic and universal approach for pure ion chromatogram construction from liquid chromatography-mass spectrometry data using deep learning

色谱法 化学 质谱法 管道(软件) 化学计量学 人工智能 液相色谱-质谱法 样品(材料) 模式识别(心理学) 分析化学(期刊) 计算机科学 程序设计语言
作者
Yuxuan Liao,Miao Tian,Hailiang Zhang,Hongmei Lü,Yonglei Jiang,Yi Chen,Zhimin Zhang
出处
期刊:Journal of Chromatography A [Elsevier BV]
卷期号:1705: 464172-464172 被引量:2
标识
DOI:10.1016/j.chroma.2023.464172
摘要

Feature extraction is the most fundamental step when analyzing liquid chromatography-mass spectrometry (LC-MS) datasets. However, traditional methods require optimal parameter selections and re-optimization for different datasets, thus hindering efficient and objective large-scale data analysis. Pure ion chromatogram (PIC) is widely used because it avoids the peak splitting problem of the extracted ion chromatogram (EIC) and regions of interest (ROIs). Here, we developed a deep learning-based pure ion chromatogram method (DeepPIC) to find PICs using a customized U-Net from centroid mode data of LC-MS directly and automatically. A model was trained, validated, and tested on the Arabidopsis thaliana dataset with 200 input-label pairs. DeepPIC was integrated into KPIC2. The combination enables the entire processing pipeline from raw data to discriminant models for metabolomics datasets. The KPIC2 with DeepPIC was compared against other competing methods (XCMS, FeatureFinderMetabo, and peakonly) on the MM48, simulated MM48, and quantitative datasets. These comparisons showed that DeepPIC outperforms XCMS, FeatureFinderMetabo, and peakonly in recall rates and correlation with sample concentrations. Five datasets of different instruments and samples were used to evaluate the quality of PICs and the universal applicability of DeepPIC, and 95.12% of the found PICs could precisely match their manually labeled PICs. Therefore, KPIC2+DeepPIC is an automatic, practical, and off-the-shelf method to extract features from raw data directly, exceeding traditional methods with careful parameter tuning. It is publicly available at https://github.com/yuxuanliao/DeepPIC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
钰c完成签到,获得积分20
1秒前
坚定的芒果完成签到,获得积分10
1秒前
城北徐公完成签到,获得积分10
2秒前
wuhaixia完成签到,获得积分10
2秒前
文耳东发布了新的文献求助10
2秒前
怡然云朵发布了新的文献求助10
3秒前
3秒前
在水一方应助生动依凝采纳,获得10
4秒前
小谢发布了新的文献求助10
4秒前
科研通AI5应助无情凡英采纳,获得10
4秒前
5秒前
5秒前
李健应助starry采纳,获得10
7秒前
CCCCCL完成签到,获得积分10
7秒前
葡萄糖完成签到,获得积分10
8秒前
淡定归尘完成签到,获得积分0
8秒前
8秒前
ddd发布了新的文献求助10
9秒前
言言言言发布了新的文献求助10
9秒前
LJ完成签到,获得积分20
11秒前
打打应助乌拉拉采纳,获得10
11秒前
11秒前
11秒前
天天快乐应助ew采纳,获得10
12秒前
12秒前
拼搏的沅发布了新的文献求助10
13秒前
沉静乾完成签到,获得积分10
13秒前
13秒前
orixero应助ddd采纳,获得10
13秒前
DamonChen完成签到,获得积分10
14秒前
14秒前
无花果应助ATTENTION采纳,获得10
14秒前
科研通AI5应助nobody采纳,获得10
14秒前
英俊的铭应助哈哈哈采纳,获得10
15秒前
科目三应助言言言言采纳,获得10
15秒前
15秒前
称心豁完成签到,获得积分10
17秒前
zzz发布了新的文献求助30
17秒前
恍恍惚惚完成签到,获得积分10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728565
求助须知:如何正确求助?哪些是违规求助? 3273595
关于积分的说明 9982653
捐赠科研通 2988993
什么是DOI,文献DOI怎么找? 1639998
邀请新用户注册赠送积分活动 779078
科研通“疑难数据库(出版商)”最低求助积分说明 747897