Semantic and Temporal Contextual Correlation Learning for Weakly-Supervised Temporal Action Localization

人工智能 计算机科学 动作(物理) 光学(聚焦) 自然语言处理 机器学习 量子力学 光学 物理
作者
Jie Fu,Junyu Gao,Changsheng Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (10): 12427-12443 被引量:4
标识
DOI:10.1109/tpami.2023.3287208
摘要

Weakly-supervised temporal action localization (WSTAL) aims to automatically identify and localize action instances in untrimmed videos with only video-level labels as supervision. In this task, there exist two challenges: (1) how to accurately discover the action categories in an untrimmed video (what to discover); (2) how to elaborately focus on the integral temporal interval of each action instance (where to focus). Empirically, to discover the action categories, discriminative semantic information should be extracted, while robust temporal contextual information is beneficial for complete action localization. However, most existing WSTAL methods ignore to explicitly and jointly model the semantic and temporal contextual correlation information for the above two challenges. In this paper, a S emantic and T emporal Contextual C orrelation L earning Net work (STCL-Net) with the semantic (SCL) and temporal contextual correlation learning (TCL) modules is proposed, which achieves both accurate action discovery and complete action localization by modeling the semantic and temporal contextual correlation information for each snippet in the inter- and intra-video manners respectively. It is noteworthy that the two proposed modules are both designed in a unified dynamic correlation-embedding paradigm. Extensive experiments are performed on different benchmarks. On all the benchmarks, our proposed method exhibits superior or comparable performance in comparison to the existing state-of-the-art models, especially achieving gains as high as 7.2% in terms of the average mAP on THUMOS-14. In addition, comprehensive ablation studies also verify the effectiveness and robustness of each component in our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超自然关注了科研通微信公众号
刚刚
刚刚
123完成签到,获得积分10
1秒前
fighting完成签到 ,获得积分10
1秒前
2秒前
H-kevin.完成签到,获得积分10
3秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
11秒前
叶子完成签到,获得积分10
12秒前
13秒前
鱼蛋丸子完成签到,获得积分10
15秒前
浮云发布了新的文献求助10
16秒前
17秒前
圆锥香蕉发布了新的文献求助50
18秒前
22秒前
佳佳应助闲听松风眠采纳,获得10
23秒前
超自然发布了新的文献求助10
23秒前
ding应助玖Nine采纳,获得10
24秒前
隐形曼青应助玖Nine采纳,获得10
24秒前
荡秋千的猴子完成签到,获得积分10
25秒前
叶子发布了新的文献求助10
27秒前
CodeCraft应助忧郁丹彤采纳,获得10
28秒前
31秒前
滴滴答答完成签到 ,获得积分10
31秒前
哦噢藕完成签到,获得积分10
31秒前
田様应助科研通管家采纳,获得10
31秒前
31秒前
Orange应助科研通管家采纳,获得10
31秒前
Rondab应助科研通管家采纳,获得10
32秒前
Rondab应助科研通管家采纳,获得10
32秒前
领导范儿应助科研通管家采纳,获得10
32秒前
充电宝应助科研通管家采纳,获得10
32秒前
32秒前
思源应助科研通管家采纳,获得10
32秒前
32秒前
Akim应助科研通管家采纳,获得10
32秒前
爆米花应助科研通管家采纳,获得10
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167