Semantic and Temporal Contextual Correlation Learning for Weakly-Supervised Temporal Action Localization

人工智能 计算机科学 动作(物理) 光学(聚焦) 自然语言处理 机器学习 量子力学 光学 物理
作者
Jie Fu,Junyu Gao,Changsheng Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (10): 12427-12443 被引量:4
标识
DOI:10.1109/tpami.2023.3287208
摘要

Weakly-supervised temporal action localization (WSTAL) aims to automatically identify and localize action instances in untrimmed videos with only video-level labels as supervision. In this task, there exist two challenges: (1) how to accurately discover the action categories in an untrimmed video (what to discover); (2) how to elaborately focus on the integral temporal interval of each action instance (where to focus). Empirically, to discover the action categories, discriminative semantic information should be extracted, while robust temporal contextual information is beneficial for complete action localization. However, most existing WSTAL methods ignore to explicitly and jointly model the semantic and temporal contextual correlation information for the above two challenges. In this paper, a S emantic and T emporal Contextual C orrelation L earning Net work (STCL-Net) with the semantic (SCL) and temporal contextual correlation learning (TCL) modules is proposed, which achieves both accurate action discovery and complete action localization by modeling the semantic and temporal contextual correlation information for each snippet in the inter- and intra-video manners respectively. It is noteworthy that the two proposed modules are both designed in a unified dynamic correlation-embedding paradigm. Extensive experiments are performed on different benchmarks. On all the benchmarks, our proposed method exhibits superior or comparable performance in comparison to the existing state-of-the-art models, especially achieving gains as high as 7.2% in terms of the average mAP on THUMOS-14. In addition, comprehensive ablation studies also verify the effectiveness and robustness of each component in our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddd完成签到 ,获得积分10
1秒前
一一发布了新的文献求助10
4秒前
zzyy完成签到,获得积分10
4秒前
清风醉完成签到,获得积分10
4秒前
haishixigua完成签到,获得积分10
5秒前
油麦发布了新的文献求助10
7秒前
M芦芦M完成签到 ,获得积分10
9秒前
嘻嘻完成签到 ,获得积分10
9秒前
GEOPYJ驳回了more应助
13秒前
yyyy完成签到,获得积分10
14秒前
陶喆完成签到,获得积分10
19秒前
Eric完成签到 ,获得积分10
19秒前
19秒前
Eric关注了科研通微信公众号
24秒前
油麦完成签到 ,获得积分10
25秒前
田様应助马上秃头采纳,获得10
28秒前
28秒前
王代灵完成签到,获得积分10
30秒前
醉熏的百合完成签到,获得积分10
33秒前
laodsy完成签到,获得积分10
34秒前
robotJ完成签到,获得积分10
34秒前
池鱼完成签到,获得积分10
34秒前
Alley完成签到 ,获得积分10
36秒前
zhishiyanhua给zhishiyanhua的求助进行了留言
38秒前
38秒前
rrrick发布了新的文献求助10
38秒前
小黄同学发布了新的文献求助10
41秒前
Sunshine完成签到,获得积分10
41秒前
42秒前
学谦完成签到,获得积分10
42秒前
42秒前
科研通AI2S应助Alley采纳,获得10
45秒前
LFJ完成签到,获得积分10
47秒前
ly完成签到,获得积分10
48秒前
爆米花应助LLC采纳,获得10
48秒前
小黄同学完成签到,获得积分10
51秒前
黑釉龙鲤完成签到,获得积分10
52秒前
YK完成签到,获得积分20
53秒前
鱿鱼关注了科研通微信公众号
53秒前
55秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187