已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comprehensive Android Malware Detection Based on Federated Learning Architecture

Android恶意软件 恶意软件 Android(操作系统) 计算机科学 人工智能 机器学习 操作系统
作者
Wenbo Fang,Junjiang He,Wenshan Li,Xiaolong Lan,Yang Chen,Tao Li,Jiwu Huang,Linlin Zhang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 3977-3990 被引量:12
标识
DOI:10.1109/tifs.2023.3287395
摘要

Android malware and its variants are a major challenge for mobile platforms. However, there are two main problems in the existing detection methods: a ) The detection method lacks the evolution ability for Android malware, which leads to the low detection rate of the detection model for malware and its variants. b ) Traditional detection methods require centralized data for model training, however, the aggregation of training samples is limited due to the infectivity of malware and growing data privacy concerns, centralized detection methods are difficult to be applied in actual detection scenarios. In this paper, we propose FEDriod, a comprehensive Android malware detection method based on federated learning architecture that protects against growing Android malware or emerging Android malware variants. Specifically, we employ genetic evolution strategy to simulate the evolution of Android malware and develop potential malware variants from typical Android malware. Then, we customize the Android malware detection model based on residual neural network to achieve high detection accuracy. Finally, to achieve the protection sensitive data, we develope a federated learning framework to allows multiple Android malware detection agencies to jointly build a comprehensive Android malware detection model. We comprehensively evaluate the performance of FEDriod on the CIC, Drebin, and Contagio authoritative datasets. Experimental results show that our local model outperforms all baseline classifiers. In the federal scenario, our proposed method is superior to the state-of-the-art detection methods, especially in the cross-dataset evaluation, the F1 of FEDriod is 98.53%. More important, we performed genetic evolution experiments on the Drebin dataset, and the results showed that our proposed method has the ability to detect Android malware variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thanatos应助sukasuka采纳,获得10
2秒前
3秒前
4秒前
vhsgurey完成签到,获得积分10
5秒前
Phil完成签到,获得积分10
6秒前
Whisper完成签到 ,获得积分10
6秒前
情话完成签到 ,获得积分10
7秒前
小松鼠发布了新的文献求助30
8秒前
8秒前
hhc发布了新的文献求助10
9秒前
tranphucthinh完成签到,获得积分10
9秒前
Hello应助陶醉的熊采纳,获得10
11秒前
KK发布了新的文献求助20
12秒前
852应助一点都不慌张先生采纳,获得10
17秒前
南宫雪完成签到 ,获得积分10
18秒前
19秒前
Lucas应助momo采纳,获得10
20秒前
23秒前
蔓越莓蛋糕完成签到 ,获得积分10
23秒前
24秒前
Ava应助koitoyu采纳,获得10
25秒前
荞麦面发布了新的文献求助10
25秒前
Summer应助蔡从安采纳,获得20
25秒前
25秒前
斯文的难摧完成签到,获得积分10
25秒前
26秒前
TBLS发布了新的文献求助10
28秒前
研友_VZG7GZ应助malenia采纳,获得10
29秒前
小松鼠发布了新的文献求助10
29秒前
嘉心糖完成签到,获得积分10
29秒前
赵安安发布了新的文献求助10
31秒前
踏实怜梦发布了新的文献求助30
31秒前
33秒前
尼罗河的南墙完成签到,获得积分10
35秒前
爆米花应助_shiy采纳,获得10
35秒前
37秒前
38秒前
39秒前
41秒前
43秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883043
捐赠科研通 2468315
什么是DOI,文献DOI怎么找? 1314077
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956