An empirical analysis of the dynamic relationship between clean and dirty energy markets

可预测性 计量经济学 分位数 经济 清洁能源 金融经济学 能量(信号处理) 可再生能源 统计 自然资源经济学 数学 电气工程 工程类
作者
Aviral Kumar Tiwari,Nader Trabelsi,Emmanuel Joel Aikins Abakah,Samia Nasreen,Chien‐Chiang Lee
出处
期刊:Energy Economics [Elsevier BV]
卷期号:124: 106766-106766 被引量:32
标识
DOI:10.1016/j.eneco.2023.106766
摘要

This research provides an empirical analysis of the dynamic relationship between clean and dirty energy markets. Specifically, we use Brent crude, West-Texas-Intermediate (WTI) crude, OPEC oil, Crude oil Oman and Crude Oil Dubai to denote dirty energy markets and use the S&P Global Clean Energy Index and WilderHill New Energy Global Innovation Index as a representative of the clean energy market. The time-frequency wavelet's multiple cross-correlation and cross-quantilogram correlation are used as estimation techniques to examine time-dependent wavelet cross-correlation and directional predictability, respectively. We use daily returns spanning from November 2013 to September 2020. Findings from the cross-quantilogram correlation (CQC) results suggest heterogeneous quantile dependence dynamics from clean energy markets to dirty energy markets. Additionally, findings from the cross-quantile correlation results reveal positive and negative directional predictability between clean and dirty energy markets in high, medium and low quantile ranges. Second, results from the time-frequency wavelets multiple cross-correlation approach suggest that clean and dirty energy markets are marginally integrated at the lowest frequencies, with dirty energy emerging as a predictive power of clean energy. In addition, we also find that the co-movements between the clean and dirty energy sources are volatile in the medium and long term, thus reducing the medium- and long-term diversification sphere. These findings are relevant for portfolio managers and clean energy producers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助ruann采纳,获得10
刚刚
2秒前
英勇真发布了新的文献求助10
3秒前
ltx完成签到,获得积分10
3秒前
springwyc完成签到 ,获得积分10
4秒前
4秒前
Active发布了新的文献求助10
5秒前
ltx发布了新的文献求助10
8秒前
Zlinco完成签到,获得积分10
8秒前
9秒前
mavissss发布了新的文献求助10
9秒前
英姑应助英勇真采纳,获得10
10秒前
11秒前
Active完成签到,获得积分10
11秒前
小马甲应助优雅的听兰采纳,获得10
12秒前
13秒前
隐形曼青应助mavissss采纳,获得10
13秒前
CHENG_2025应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
佳佳应助科研通管家采纳,获得50
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
Psychexin应助科研通管家采纳,获得30
15秒前
15秒前
佳佳应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
17秒前
CipherSage应助哒哒猪采纳,获得10
17秒前
candoubinbin完成签到,获得积分10
18秒前
ruann发布了新的文献求助10
18秒前
科研通AI2S应助舒芙蕾采纳,获得10
18秒前
19秒前
斯文败类应助研友_ZA2jm8采纳,获得20
19秒前
里里完成签到,获得积分10
21秒前
22秒前
华仔应助不想读书采纳,获得10
23秒前
24秒前
yyy发布了新的文献求助10
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967149
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163469
捐赠科研通 3247417
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450