An empirical analysis of the dynamic relationship between clean and dirty energy markets

可预测性 计量经济学 分位数 经济 清洁能源 金融经济学 能量(信号处理) 可再生能源 统计 自然资源经济学 数学 电气工程 工程类
作者
Aviral Kumar Tiwari,Nader Trabelsi,Emmanuel Joel Aikins Abakah,Samia Nasreen,Chien‐Chiang Lee
出处
期刊:Energy Economics [Elsevier]
卷期号:124: 106766-106766 被引量:32
标识
DOI:10.1016/j.eneco.2023.106766
摘要

This research provides an empirical analysis of the dynamic relationship between clean and dirty energy markets. Specifically, we use Brent crude, West-Texas-Intermediate (WTI) crude, OPEC oil, Crude oil Oman and Crude Oil Dubai to denote dirty energy markets and use the S&P Global Clean Energy Index and WilderHill New Energy Global Innovation Index as a representative of the clean energy market. The time-frequency wavelet's multiple cross-correlation and cross-quantilogram correlation are used as estimation techniques to examine time-dependent wavelet cross-correlation and directional predictability, respectively. We use daily returns spanning from November 2013 to September 2020. Findings from the cross-quantilogram correlation (CQC) results suggest heterogeneous quantile dependence dynamics from clean energy markets to dirty energy markets. Additionally, findings from the cross-quantile correlation results reveal positive and negative directional predictability between clean and dirty energy markets in high, medium and low quantile ranges. Second, results from the time-frequency wavelets multiple cross-correlation approach suggest that clean and dirty energy markets are marginally integrated at the lowest frequencies, with dirty energy emerging as a predictive power of clean energy. In addition, we also find that the co-movements between the clean and dirty energy sources are volatile in the medium and long term, thus reducing the medium- and long-term diversification sphere. These findings are relevant for portfolio managers and clean energy producers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到 ,获得积分10
刚刚
华仔应助dhfify采纳,获得10
刚刚
刚刚
天天快乐应助酷炫亦竹采纳,获得10
刚刚
大力甜瓜发布了新的文献求助10
1秒前
Lily完成签到,获得积分10
1秒前
Hello应助光亮的太阳采纳,获得10
1秒前
汤飞柏完成签到,获得积分10
2秒前
Doctor异乡人应助DOG采纳,获得30
2秒前
YElv完成签到,获得积分10
2秒前
徐臣年发布了新的文献求助10
2秒前
今后应助清脆的又莲采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
壮歌完成签到,获得积分10
2秒前
2秒前
不将就1345应助科研通管家采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
詩翰应助科研通管家采纳,获得10
3秒前
宗嘻嘻完成签到,获得积分10
3秒前
Sandrine应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
Akim应助老实乌冬面采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
ZSWAA完成签到,获得积分20
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
无花果应助Zxz采纳,获得10
4秒前
顾矜应助Davin_ji采纳,获得10
4秒前
4秒前
Hello应助nhhdhhn采纳,获得10
4秒前
传奇3应助南念采纳,获得10
5秒前
5秒前
5秒前
Hello应助jillian采纳,获得10
5秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272